ELF>@ȷ@8 @^^```**ЋЛЛ*+000888$$Ptd@ @ @ QtdRtdЋЛЛ00GNUb25y(?RkF~~G~v d[y2 `WrQp1tA :L.8HPw+ -=@%Fahjtlb, V9eF"Eq[YU __gmon_start___ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalizePyInit__decimalPyMem_MallocPyMem_ReallocPyMem_FreePyLong_TypePyFloat_TypePyBaseObject_TypePyType_ReadyPyUnicode_FromStringPyDict_SetItemStringPyImport_ImportModulePyObject_GetAttrStringPyObject_CallMethodPyType_TypePyObject_CallFunctionPyModule_Create2PyModule_AddObjectPyExc_ArithmeticErrorPyErr_NewExceptionPyTuple_NewPyTuple_PackPyExc_TypeErrorPyExc_ZeroDivisionErrorPyObject_CallObjectPyContextVar_New_Py_TrueStructPyLong_FromSsize_tPyUnicode_InternFromStringPyModule_AddStringConstantstderr__fprintf_chkfputcPyModule_AddIntConstant_Py_DeallocstrcmpPyExc_RuntimeErrorPyErr_Format_PyObject_New_Py_NoneStructPyArg_ParseTupleAndKeywordsPyLong_AsSsize_tPyUnicode_ComparePyErr_SetStringPyList_SizePyList_GetItemPyErr_OccurredPyExc_ValueErrorPyType_IsSubtype_Py_ascii_whitespacePyContextVar_Get_PyUnicode_IsWhitespace_PyUnicode_ReadyPyList_NewPyErr_SetObject_PyUnicode_ToDecimalDigitPyList_AppendPyErr_NoMemoryPyContextVar_SetPyUnicode_CompareWithASCIIStringPyObject_GenericGetAttrPyTuple_Type__ctype_b_loc__errno_locationstrtollabortPyDict_SizePyExc_KeyErrorPyDict_GetItemWithErrorPyObject_IsTruememcpyPyLong_FromLong_PyLong_GCDPyExc_OverflowError_Py_NotImplementedStructPyBool_FromLong_Py_FalseStructPyComplex_TypePyObject_IsInstancePyComplex_AsCComplexPyFloat_FromDoublePyFloat_AsDoublePyObject_GenericSetAttrPyExc_AttributeError_PyLong_NewPyArg_ParseTuplePyUnicode_AsUTF8AndSizestrchrstrlenPyUnicode_DecodeUTF8localeconvmemmove__ctype_tolower_locPyFloat_FromStringPyComplex_FromDoublesPyUnicode_NewmemsetPyObject_HashNotImplementedPyType_GenericNewPyObject_FreefreecallocreallocmallocPyUnicode_FromFormatPyLong_FromUnsignedLongPyObject_CallFunctionObjArgsPy_BuildValue_Py_HashPointerceilPyList_AsTuplePyTuple_SizePyLong_AsLongsnprintf__snprintf_chk__strcat_chkPyUnicode_AsUTF8StringmbstowcsPyUnicode_FromWideCharPyErr_Clear__memcpy_chkPyDict_NewPyDict_SetItemlibm.so.6libc.so.6GLIBC_2.2.5GLIBC_2.3GLIBC_2.14GLIBC_2.3.4 ui (ii 4>ui (ti IЛ؛ (!0,8:@FHTPdXt`hS`(0` (8@H`X͗DkȣUУSҗܗ @H@FPhpVxVVWWȤ WpWWY`{h>x@ IMȥ`Nإ`WW $(0X8 @.HYX`)hZx@8bDpc`VȦbئ hPmPF q(pG8@@yH?X`hKxE@FȧSاT U (V8`@HPNX `hXxƘP[`Ϙ`\٘Ȩ`]بpQpO  (L8@H>X `h>x`P\   Jȩ@Jة`#J/K 6(`K8@@@HKX`Hh0LxRL ZLgȪ`Mت`o@sp?  v(pB8@HCX`h@Cx NPȫPZث pRǙ@b` ՙ(@8@HAX`hCx@O QȬRج"`^ )`_ 6(@`8`@=H@aX`ChPGxO?[dȭW͗ opH` ~(`E8`hqe @ (@8@Hp X`$h"x.'8;Dȯ@=د`V; h` q(8`@yHX`hpx@Ȱ0ذ`$ Ƙ` ٘(*8@HX` hx``#`/ȱ`ر`@`R H(8@gH`X`6hxZ Ȳpز` *` v(8@HX`hx  )Ǚȳ;س ՙ `  ( 8@@)H4X`hpx` 0 `"ȴ0ش 65@=8  (@8@HX`h`#x[0p0p˚ȵ dq֚P (q@HPq`h0r PiPhpP (`pȷpjз@p (08I@UPbXȖIU@H`ћhɛȹ 6(.@MHE`dh\umȺhvpػ0prxٜH0`.Xs`:@`@(8#@@(`XP`h&``ȖpȖHȖHȖHȖHȖHȖ  (0Ȗ@HȖ`hȖȖHȖHȖHȖHȖHȖ0Ȗ@ȖPHXȖpȖȖHȖHȖHȖHȖHȖ0H8ȖPȖ`HhȖȖȖȖȖȖHȖM (08@HP6Xd`hpu;  (08$@%H)P*X9`=h@pAxEGST\^ajruȟvП|8&PDD0D'@--8@5H[PP (08 @ H P X`hpx !Ƞ"Р#ؠ(+,-./012 3(40687@8H:P;X<`>h?pBxCDFHIJKLMNȡOСQءRUVWXYZ]_ `(b0c8d@eHfPgXh`ihkplxmnopqstwxyȢzТ{آ}HHe?HtH5?%?@%?h%?h%?h%?h%?h%?h%?h%?hp%?h`%?h P%z?h @%r?h 0%j?h %b?h %Z?h%R?h%J?h%B?h%:?h%2?h%*?h%"?h%?h%?hp% ?h`%?hP%>h@%>h0%>h %>h%>h%>h%>h %>h!%>h"%>h#%>h$%>h%%>h&%>h'p%>h(`%>h)P%z>h*@%r>h+0%j>h, %b>h-%Z>h.%R>h/%J>h0%B>h1%:>h2%2>h3%*>h4%">h5%>h6%>h7p% >h8`%>h9P%=h:@%=h;0%=h< %=h=%=h>%=h?%=h@%=hA%=hB%=hC%=hD%=hE%=hF%=hGp%=hH`%=hIP%z=hJ@%r=hK0%j=hL %b=hM%Z=hN%R=hO%J=hP%B=hQ%:=hR%2=hS%*=hT%"=hU%=hV%=hWp% =hX`%=hYP%<hZ@%<h[0%*9f%9f%9fH9A81H )H.H;&H;1H)H3 GHcSL2HN1E1I/A(L=`Mt1E1I/L%`&IHt H+Mt I.Mt I/H=[`HtE1H/LH`H=`HtE1L_H/H=`HtE1H/L `H=_HtE1L_H/H=_Ht1H/H5_H=_Ht1H/H _Mt ImE1NLMMHL|LoLbXND%:;0P&eME11{L *HLHHGLWIE1L=^MS1E11HOJLE1L-^MLME1L~GE1E1E1L^dFHQMFHDFH+tEI.tIL=$^E1M1E11E1SH+uHLkEHL1E1E11E10H5HH5&H811aL1H+HSHuH1܃H+uH~H=5H5.(H8|H"5H5'H8a:^B<BvlAuLLH)H5H8oeI~(xLAt2A<$v6A$tf$3$NHVHKMLLJL$<H#H5H8oLLLrJ$%BƄ$1@THH9$gJHHKMLL8MJHcƄ~@vzƄ$KONNNNNNH!H5\H8,PHO16OH(HL$D$;U|$HC(u H9%HC ^HmuH1PHP1QD$hD$HAQH1[ùH(HL$D$T|$HC(uH$HC _W 1H(H{HHL{H{H1/1(1!11HrN H9r'HH9҃ 11H<$1HNgm1xAH#A NHƤ~H9҃H<$Lo1HtT$0HD$ H9Hk HxE1HHmuH1PHfPHSH5H8zL]LPyI,$tHmsH1fL$LIm7L*[L]A\A]A^n[L]LA\A]A^HSM[L]LLA\A]A^Q1LL<LLH<tQI}(IuALLHHTLLH8TLLH<I'HLHT$0HHD$HHHD$8t^H|$0HHT$0L\$8HHIHt$ HT$1LML\$bL\$L@HT$HBm`HT$H`SL[(HCLR@IHt$ HT$LM1L\$L\$*HT$0L\$8HIt@IHt$ HT$LMHL\$aL\$u%L?L?DL?6L\$L?L\$#[L]A\A]A^]l[L]A\A]A^ͶA $ `O H_H5H8 Hs17Imj LY] I,$tHmuH>L4L* L! LLd$@HLLL9 L|$HLLthM H|$>9  D$HH߉Ɓ ut$ :k H|$@b>D$< H|$8J>D$ HHj= H|$h >D$@ % E L¾jE1HH#NJE1H9AIH)HL`IM9EL9< H$=HT$@Ht$HLC111LD$@fHLfouH$LH$ HƄ$0H$$$bAui$L$uYH$H$E1H|A<wL$<$L$uL$H<L$MnMF(1LI$wH$<$Hr<1H$X<$xHT$@LL$2OAMF(L$pHT$@LLT$o7LT$%HCHHpH9HLHS H9t  tH9/HS(HHC%HH7%HCHHNH9t,I#NJL9H0IWH)/&.HH{H,H{H,HT$ HGN.HT$ /H1H5JvH80H|$H/t&H|$H/0.}0L!/H HT$ ,/H|$H/H0HEHwHpH9HLHU H9t E tH9/HU(HHEu1LH532HELH^M12HHD$sHD$j2H 1[HHt$THt$2EHJE1E11K<1KE1KLKLKE1E11^KE1E1E11NKLsKE112K1+KE1#K1HS(H91MIl$(M9l$ 5A$fAD$A$1ID$1 4Hl$=NH|$H/tLH|$H/tH1 NH|$H/t Hl$ N"HmuHHSM15urHH5H81OLNH|$ H/t6H|$H/uH|$ H/uHHL$NtHL$ NH+uHZAOH TH9у /OKH9tH9*Q,QLuPwH|$87T$u L7H6HD$H|$87D$HD$5HD$L7HD$5HmuH1CRHQHURuRHƤ~H9҃@6HrN H9rHH9҃ 66t HL$5SHH5H8B$Ll$PLHL襬fom1L$HD$HLljD$DHD$HL$$folH$8LD$$(Ƅ$\vLH5H*L4$ID$P^HT$hHD$xH|HLL4$; D$$LLGMg(IGJ<t$$A1H>=1H*=L$_<AD$H$M~CAD$II1LLLUDL3L3 H3cDH|$x3D$P<H|$P3<H$3$q<H$w3^<L蒜Hl$DLLLH$IHHLLT$DA A>@IvIN(H|u ILHHHHLH蛊HL$ILH$L耢$ D$P t$DLLL4$H߁`_H$Hl$DyLL4$HyH5//H9P!u~HVH5gH81PHXPLKPH|$H/t5H<$H/u,H|$H/uHHL$PHL$OH\$HXKDEHE+DIuEHyH5].H91ROu~HH5H81RHRLyhRH|$H/t5H<$H/uZH|$H/uHH>HL$Q/HL$QH+uH 1SH H5lH83It&IIIIIH H5kH8H+uH1=SH|$@1ULLHH$ @H$HtFLHFHH|H<$1MMHHQ*^H<$/L$LL\C[LL\RH<$/H<$MM1HH]H|$@LJ\TLH0\H$ fo-gfH$$ $Ƅ$0$$M*ZH$ /JH$.TH$.jTH$(.ITH$0.(TH$.[TH|$ .=THHtBH<$MMHHHD$SPHL$u.H<$HL$W.H|$L.^H<$=.OH/.a\LLAH$XH$H$HPL-+ML-QH$X-8SH|$ H/tg1QH+uHHQLQH|$ H/t$H|$H/uHHL$PHyH5*H9P t HL$PH8 H5IH8PL-]H|$H/tHl$!RHl$R HIQHmuH1QQH|$H/tNH|$H/tJH|$HtH/uH|$H/tH|$H/uHl$QyH$A,\aI_I ^HT$PLL\$?AMG(L\$^HT$PLL\$N'AMG(L\$^HT$PLL\$`LT$X%'LT$XL\$`2jHT$PHL\$`LT$X>LT$XL\$`^MJdHT$PHL\$`LT$X&L\$`LT$XH$[+$f`HD$Ph^LD$PLLHL PAE^E;^MgH]MG(L\$]HT$PH=EHM(_PHH5H8&QHP UHU;QH?H9u HȄ"QUHLLHhHLH_WHT$PHHHt$@WHLHSHLVSH|$p*SH$)SL)SH$)`SH|$)BSH$)!SH|$)SH$()RHHMHH$ }IHtAHHL\$@HHNL\$@HIL,)H$H|$HUpL)II1LLLL\$@OL\$@遈H?zZH9rZHvHH9HrN H9HH9HHH @jH|$81ɺ1AHc H9rHƤ~H9HHHiH#NJH9HHHiH TH9HHH i iH$'$skH$'`kH|$'"H=HHjiH$X'$0~LH:Hk(HCv1IILLLL\$@LIL\$@LR'!IIHLLLL\$@IuL$'L'L 'L\$@駆H|$8LS_~H=?BvsH=w}H=HH~hH$&$NjH$&;jH|$H$H~9L$(H$mH=HHh hAu.H|$81A $@}H|$&&c}HBH|$81HHH+ 1еA $Apn}H$(%$2}LLHH$ HHtDLHHH1MMLLHnGHy%L$HL)R(tHS%MM1LLHM $H|$H$|Ɓ $|$Qrh% $|ahHHt@MMLLHHD$hFHL$hu,HHL$h$H|$h$+H$H$韂K)OH|H5H8|OHOH\$HLH舛OLLPO D$LLƁA 4$t$ POH|$#OH|$8#OA $ A$dOHT$0HHHʋ-1HF飉LHQPuHL$PMMHLHCT>Hl$$,HH߁P͈H$6#Hl$$,H߁HO阈$,HH߁O{H$"vH$"雈H$"zH$"YH<$"<HT$H4$6H4$HT$HItXLt$LHMD$uMLLHHRA}w I}(9"AEu'L)"D$ЊHHN龊D$鲊HHN1Hؾ1HH5>XHH1H4L!鴎L!镎IxLT$@LT$@HI]zHA^1H \Ha\H;{H;1H]eH3 賿I}LT$@ LT$@HIL t|H|$8 D$)L 1MHHD$HT$LH5cH9w MH(HL$D$11|$HC(uH/HC OMGM膿OH+OHoOHbHL$eNH|$(H/ODyOL7Nu%HH5H8SHO >OHL$NH|$(H/t$H|$ H/t H|$H/OоOƾ迾 u H5AH9w CfE OE t`H9iOHT$ HR2WOH|0OHOH(HL$ D$ /|$ HE(uHHE HT$ H[OH'HHHt$OHu-HH5H8&1zOHHjOHt$@OHHHHIKPLsPH|$(cPLt$PLLL蓕tkML\$h3LLHgI!LIHt$@HT$(1LL\$hL\$hH$[频H$H遑DHH$HH$ 'H|$0 H$(H5H;s ׎H{(LL$H$ LD$Ƅ$ Q,LD$LL$$ HC(uHHBHC 鄎LH6HZLHV.L$H$?GHT$pLL$h:LL$hHT$pHL\$xIt8IHt$@HT$(HLL\$h<u%LL4L&L\$hLL\$(L\$(3HعHt$IQHfu-HH5H81@QHH0QHt$QHHRHKH5\H8蜹[RHOQHھLF6SL$ILa[HE1ɾDŽ$I9HHHHcуIHI9|LEIA7Ll$PHLLLDL$ HL$HH$WA7ILHt$ LLHLLqILLHLILLLL)L$DL$ IAuARAH=|$Pw H|$xD$Pu H|$PHLLH$vpQH|$8RLR^SHH5H81,SH+uH苷H職R @I?LL8VH<$+UH$UL UH|$xUH]xEcH9ЃUSH|$PUHLLIؿWHT$0HLHt$ EULd$PHLLюtIMSHD$TH$dUH|$TUH$ATHھLC*U LLD$TWLWH|$(W貹$XHH5H841PXH+uHߵHյWktvHL$PYH|$ H/t;H|$H/u袵 H|$ H/t1Y艵H+uHyrLh~YH[HL$XH*H5;H8{뤀 txH9[H$H(v[HD[E t`H9YH$H(UH]xEcL9EAAWZH#NJL9EAA;ZH$H[H$HYH([]A\A]A^A_H耴\]O]HGH5XH8蘴1{]HmuHB tVH9^LH'^ tH9]L'Hk^L)]X[]A\A]A^A_LH s^ptvHL$_H|$ H/t;H|$H/u觳 H|$ H/t1_莳H+uH~wLmC_H`HL$^H/H5@H8耳H]xEcL9Ӄy`A$ t!H9_HT$L&HaHT$L _H8[]A\A]A^A_H#NJL9Ӄ` tH9`HT$Lu&`HT$L`)tHL$^cH+uHm1cH?H5PH8萲LFcH|$ H/t6H|$H/u&H|$ H/uH HL$bH]xEcL9EAAdH#NJL9EAAd t4H9cLHx%) t;H9eeLH]%UeLH cH8[]A\A]A^A_LH #etHL$gH+uH51fhHH5H8XL$hH|$ H/t6H|$H/uH|$ H/uܰHҰHL$[gð\urHH5H81jL蓰iH|$ H/t6H|$H/usH|$ H/uaHWHL$ iHHL$iH+uH.dzurHH5 H8M1kLkH|$ H/t6H|$H/uޯH|$ H/u̯H¯HL$j賯HL$jH+uH虯2urHgH5xH8踯1qmLi?mH|$ H/t6H|$H/uIH|$ H/u7H-HL$vlHL$elH+uH蝲onHH5H81nHmuHɮH迮4nUWpHH5H8׮1pHmuH聮Hwp u:HBH5SH8蓮1rH+uH>H4rHL$(rLrH|$ H/t6H|$H/uH|$ H/uHHL$qҭHȭs^sHH5H81sHmuH芭1tHyHt$juHuH<H5MH8荭1VuHt$7uHJHwJǰtvHL$vH|$ H/t;H|$H/u H|$ H/t1rwH+uHլάLĬ*wH跬HL$vHH5H8׬H|$Hb KyH|$PR 0yHH9҃ NxH TH9҃ 5x螫H#NJH9҃xH]xEcH9҃wH#NJH9z1D$xLl$PLLLt6M!wHHc9cxH|$x ^xL} qxHL09jx&tHL$zH+uHj13{H<H5MH8荫LCzH|$ H/t6H|$H/u#H|$ H/uHHL$ zH$ }|H|$x x|H|$P s|H|$H n|LLC8|H$h |H|$ X A|HT$ H>X}HT$ HF}HyH5H9}ޭuHH5$H8d1R~HHD$HD$;~HHD$HD$~HH}H|$ H/uϩHũHL$v}HL$l}Lt HL$~HwH5H8ȩbL{H|$ H/tDH|$H/;W1H|$ H/">H1HL$*~"軬tHL$鰀H+uH1HHH5H8"LبH|$ H/t6H|$H/u踨H|$ H/u覨H蜨HL$5荨H胨HT$鄂u$HIH5ZH8蚨1鞂^HT$MHt$@HH5EH8bHHt$Ht$iHHt$WHH5EH8H|$H/uħ1HmuH讧L褧鎅HmuH萧1LH|$H/uyH|$H/ugH|$H/uWpH!H5D1H8pWHmuH1H|$H/uH|$H/uH|$H/uHmt1H˦H|$H/u蹦H|$H/u触H|$H/u藦H|$H/u腦1霆H|$H/tH<$H/ud]H|$H/uK1/H|$H/tH<$H/u*#H|$H/t1颇H+uH1LJH|$H/t1BH+uHѥʥH+t1"H賥H|$H/u补H|$H/u菥H|$H/u1ɋ\C~LHA]II9ujH+uHD1n1H=tT$OHHt1HxHL$IT$.t$LRR+H+uHH額H5OHHHx19LL٪HҌ<IEH5HPH^H81d΍zčv;HL$tHL$u2HL$ϦÅ HL$L0H8tL H+uH1ZH|$H/t2H|$H/]أSH|$H/D迣:赣Hmt1H蝣H|$H/u苣H|$H/uyH|$H/uiH|$(H/t2H|$ H/ HH|$(H//%H|$(H/t:H|$ H/t6HmH鴉LHD$HD$g٢ҢHHD$âHD$MDL$tZHLLzDL$uGHHL[]A\A]A^A_011LߔM݉象HLLDL$Zt$H1[L]1A\A]A^A_鿒H|$H/u1黊HmuHL鉊HmHס鲎H|$ H/辡陎H|$ H/t$H|$H/t H|$H/t菡j腡~wGQ uHAH5>H8蒡1ZHHZ1[HD$0HD$G1頊HD$HD$錊1HD$HD$ъ1;HHD$ܠHD$$1|HD$HD$h1HD$覠HD$魋1HD$苠HD$HHD$tHD$L1E1魌HD$RHD$陌H|$H/u81$HmuH"LH|$H/u1HmuHLMH|$H/uΟ1ڍHmuH踟L讟騍Hmt1鎎H蓟H|$H/u聟H|$H/uoH|$H/u_H|$H/uM1HmuH7L-鷎Hmt1靏HH|$H/uH|$H/uH|$H/uޞHmt1QHƞH|$H/u贞H|$H/u袞H|$H/u蒞Hmt1HzH|$H/uhH|$H/uVH|$H/uFHmt1鹑H.H|$H/uH|$H/u H|$H/uHmt1mHH|$H/uНH|$H/u辝H|$H/u讝Hmt1!H薝H|$H/u脝H|$H/urH|$H/ubH|$H/uP1|HmuH:L0JH|$(H/u1HmuHH|$(H/uH|$ H/uH|$H/uќ1鍓HmuH軜L豜[H|$H/u蜜1HmuH膜L|鶓Hmt1霔HaH|$H/uOH|$H/u=H|$H/u-H|$H/u1HmuHLŔ1&H|$H/uߛ1黕HmuHɛL进鉕H|$ H/t+H|$H/t'Hl$黊HmuH苛1饊xLn`H|$ H/uYH|$ H/uGH|$H/u7H|$HtH/u"H|$H/u1̕HmuHH|$H/uH|$H/uؚHmt1雖HH|$H/u讚H|$H/u蜚H|$H/u茚Hmt1OHtH|$H/ubH|$H/uPH|$H/u@Hmt1H(H|$H/uH|$H/uH|$H/uH|$H/u1xHmt1這HřH|$H/u賙H|$H/u衙H|$H/u葙Hmt14HyH|$H/ugH|$H/uUH|$H/uEH|$H/u31/H+uHLHmt1HH|$H/uH|$H/u՘H|$H/uŘΘ1HHD$誘Ht$ؙH|$H/u萘1遚HmuHzLpOH|$H/u[1HmuHEL;鷚A1鳉HHD$Ht${H yHlHH5>H8#YٙHKHH5Z?H80H+!H螗蔙HޜH+HyH=H5?H8螗H+ǜHL麜H+uH91H+uH$1ċLHD$HD$L鯞H|$(H/tfH|$ H/tbHmHΖH|$(H/tFH|$ H/۞誖ўH|$(H/t)HD$ 鑞HD$(釞聖zslHHD$]HD$THKiL>H|$H/t,H|$H/u1H|$H/tHl$HmuHHl$ўHѕ-Lĕ|H|$H/t,H|$H/u褕1uH|$H/tHl$`胕|HmuHkHl$7HW铞TU鱟HCHC鷡[L]A\A]A^"HSM[L]LLA\A]A^,CH4HH5=H81ÖH]B11H9HMH9t8E tH9HHU HH9I $fHnfHnHflEGHlH1[HHD$$Ht$-H1[HHD$Ht$NSH=3N>HHt$H@@11H{HcHC0HK ?H[HH[]HHD$覓HD$UH1[HHD$臓Ht$p1ˤHw黤HmuH[1sLHD$GHD$\HHD$0HD$:I,$uLE1鞊 HЊHH5.<H8&鶤HF雤1HHD$迒HD$֤H~H5<H8ߒ1BRHAn1H .HG.H;aH;1H@<KH3 ޒ虑SHAU1H .H-H;H;1H<H3 苒FL9L$LT$(K 1HH,H=LL$MLHT$ H +HLT$(HT$H|$HLT$ L貧LT$ H1ILHHH +LLHMM荥H|$HXK>H[]A\A]A^A_^HD$1HHH,H葑LD$MLHt$ H +H5LT$(O1L1H$KI1+HpHgHHH¸?H"H9HHHNHHN$LHL,1HHL LLHH1L)N|%HLHHD$h腐HHH$tGLLH軑HT$h1LLHHH$HtMԪHqLE1eH$WH$ٮH:2HHHL9s4H L9FHwHL9fH]HUH׭I1LH$M9E1E1IL$L$H)H$H$H$H$HH$1HD$pHHH|$pIL$IHLH)H)HI9)lH#NJ1H$H91HH$H)H$1L$H$L$H#NJL$L$1LL4L11IHH$L$L$H#NJH$H)L$H$L$LL$1L̵HIHD$hI)L4HH9$tA}Lt$hw1DLOHоdHׇH·H9H{H9rHmdHHHH$HH9雈HdMGH)鱌HHHH$HߏH9pя14HeHދMތ|HoHЈH!L9Hf H|HJHuL9lH*^HhYHZM驚H,HMHcHHHd$H)IIHI)HJĚMӘeH)H*ӛM2ʖLHd$I)IIII)H.H}ΕHD$I)HIII)H@鮚Ha锜H? H餘M'鹔HD1H饟H1鋞HHRZHXƥL1H"HH mH٧HEHߨzI|$l1HD$HT$PH$HT$XI|$`HL(HHLHL*L$`LHHD$PH|$PI9uH|$XLLL$xLT$pLD$`L\$P)HT$LL$x1LT$pLD$`L\$PH IxHHHIHL*LIL(LMH)H)DHI9uHT$XE1HH{HIHHHD*LHD+HLH)ALH)HM9ut1騮L1LӰ+AIMM1HйHHй/H f?MHH9鋷MH9HLHɸLIHMH9W驸MH H9H)MI|I)I9{LH)ILH)I9+hHθLIHH9M#鮸HLIHT$II9M锸I)ILI)H9鲳H)HLL)M9ldH)HLIHD$IM'I9MH/H fe?H<JHD鲹HMLHd$I)IIII)H HaH)HNHTHH HsHzHD$I)HIII)HȿpHHHd$ H)IIHI)HM8M*HMHNHDHJL]1HHHHHH81鰪1ATUH-SHGD HHu7H H}t9D#Et(HHuHUyH uHă1 HH[]A\H1H>L(.H5.H8t'HHHLHHO #HHIDH H HPH=-1t$H$t$P$t$X$t$`$t$h$t$p$t$xL$LD$xH$HT$pH$輁HU1HSLHLD$ D$ XD$ AtHھHKH[]AWWAVAUATI̹UHSHh( Ln~FHT$Lt$pD$'HF(L|$@$fInF LH$H$`LH$H$`$( H$(HD$8H$XL$8( H$$HfHnH$fl$HƄ$0Ƅ$0HD$8Ƅ$0Ƅ$P$$(0-H$)$`H\$pHɚ;wkH'w%HcwH  HH?BwH HHH?zZH9rRHvHH9rH TH9Ѓ HrN H9rtHH9Ѓ ^Hc H9r;Ho#H9rHƤ~H9Ѓ*H]xEcH9ЃH#NJH9ЃH5)HcH_H¸H9HLHE H9t#E tH9~LH LHH}(H$`HٺHt$H|$/H|$eHEHHHHHEf+L!L!(?+1HXLIH$HD$AD$H($+Ht$HD$dDŽ$HD$HH)D$pAIcL4HD$pHD$HxHHIHcIH`H!HL$MHHH$H$HHD$\HIHHI9HD$@H4$LLHH)蟚HD$@MHHT$HH$HD$@HD$(HHAIțHt$(HLH$6HL$MHH$0HGHL$MHH$H&EHD$@HT$H4$MHD$(HzUuD$'L)m ЈE$wH$$uH$n$wH$(V$uH$>Ht$LH5Hh[]A\A]A^A_AWMAVHIAUMATUSHhHt$HT$L9rdIwHHt$L|4Ht$H|$LLLD$X轖HOT=LHJ HI@HIHD$HD$IJ,M)L(M9M9s{K HHt$MH 1MLHH tDKT=I<.HlHL$1HHT$Ht$MMHHHHu71KD-HHT$MH 1LHHuK}w H}(iEuHZ΀;w H{(Iu H;H<$1hH|$1hHĸ[]A\A]A^A_AWH L=AVIAUATIUSHHcIHH8H,HuH"zH +H$Ht4HCHu+HHkL=TLFH HHFHL$DHLHL$u1!DHLхt1LSL9scI4IH;eH=_H9jtH=dH;ouH=i}H;t~H=nbH9yoH=sGH;~xH=x,H5kfH H> H;Fu@FA IL9$$AAVwD{(H9l$XTHD$XH@H|$X`qHHE1E1L5H|$XLzrI>H; H=H9 H=H; H=oH;H= TH;H=9H;H=HDH H:H;Bu@BIA L9AAuD{,1H[]A\A]A^A_HH54@H5$@HtH5H\HPH5H5H,H H51C,F1҉S(H9,$H9l$P2I9dH9;I9~g]SI?5.mHHC HrLH6omHH|H5H8k[rHt$XH}1҅O]mHwH%H5H8~k\4mHNHH5EH8Uk3HH5H8:klH HH5)H8kff.AW1H AVAUATIHHUH_SHxHLL$0LD$8HD$8H\$0iULl$0I9WI}H5H95tHl$8HH}L5rL9bLmRH}HCE  >@HU0HmHT$H}anHT$HHD$n HL}|*H@<8$ :H#<81ɃH H *Hl$ LD;DA_AW~1HEL}H9uAD$,M9LlHHfHCHC0HkC foHt$HHC@Ld$,HT$@HXLIC0foLHCHD$PHO)D$@HD$XHHD$`HHD$hT$,An%D$,AM(A E,΁H|$lHxH[]A\A]A^A_H=1HT$@5iLl$@MLl$0Imqf.LHL'HHT$iHT$*H~kz1H 8Ht2< H8H9HD$H5H9L5LHL4H1҉T$@M9uL9eu HEHLHH)pHuHxHT$@>t$@LR-p1LA$0HHk1#IHH9&HHoHH0hHHHhH+H+H1LD$,DHHfoLcLt$,HHXLIHT$@LLHD$PHk)D$@HD$XH!HD$`H HD$hD$,A%LƉD$,uWHi(hFHEH5HPHH81i1H dtE H+uHd1LLyD$,gHdL|$mJf_ts~AIHH9u{!ȉHInH8n#PLxMtc1AcIHtTL5"A#FI I>uL5A#FI I>uLL dI,$mH+H1cHVHL$HT$eHT$HL$HL$HT$ fn0HT$HL$IAGHL$HT$eHL$HT$%$mIHtA>mHD$Ll$ HcP(HM)HD$H)L9XE1AGCuHS0HC@H|Ls HC LHE!H+I=MH=IH3MHL6I,$IuLmH8>;1[HxH5l1H8;>L:HHD$:HD$z葏IHtH(KHKzKKQKfDAWAVAUIATAUSH1HxH=Hl$@H;LLt$@MI.!H{L=hL9HwHH9IECAUIuHKAA AH9MM@Iu0H{@LS0I|JLAЃAHD8M] IM(LC HC(,LLH9M9H1HxnIHLH9gHtMKTJDH9NHt4KTJDH95HNHtIHH9Hs11IEHIEtxH+AHtJcHf.1@Hx[]A\A]A^A_9DHH1H9LImuLt$F8t$sL;H{trLHLIHHuI9oMIELMH߉t$7t$H9@@Hc&H5OuH9&AD$'AN,LHLIHh6ILL)HNHM)HLL誰e@@낅@@si@@ZHILL_11Ht1k1)vA ]AqLiHAHtHHx[]A\A]A^A_:H{H5PtH9]9PH5;H6H#H5kH5HGLHLHD$HL$IH)HMGAE1HLL$H5PkT$ L84f.pzK~ fTfV f. Df.D$GfTf.+LDIH4D1H%I,$IDL1M MnI~ 1IHuDH1I/HD$HHD$HHLLx*I.HgDL0HL-r0jIH'DL1HLHHC>IF(HCfA0Mn L-qIFAVIH"L1LHHT$HHCՐID$(HCHXLIfA$foA\$HD$@HrID$HD$HHMl$ HD$PHHD$X)D$0A wfoIFAIF(IFHH=ɚ;H='MHcH HLl$0LIFHD$,LHH$A$ uH5spI9t$ CIT$(HM/1A$HD$ID$HAL9I|$HH=ɚ;QH='HcEH HL<$LHLID$LLLMLL(S(D$, C,рGL}L$LLLLKH$LLA<?KA$<S(D$, C,рEH\$ D$EH)HE HhH[]A\A]A^A_H?zZH9dHc H9Ho#H9CH]xEcH9Ѓ*H?zZH9Hc H9rjHo#H9H]xEcH9ЃH5znI9v xAH=?BH=PH=H#NJH9Ѓ)H#NJH9ЃlH=?BH=H=HvHH9HrN H9HH9Ѓ HvHH9]HrN H9mHH9Ѓ I|$(A$LI~(ALrH?I9b?Ht$AE1I#NJI)H#NJI9AIMI)1M9}#?H=H=HƤ~H9ЃHƤ~H9ЃrH=bH=H TH9Ѓ 9H TH9Ѓ |h  THHHt$H}8,D$H1=L*H|$P,=HdHHUH}1h@Hz!>H:=#BjLjMtl1(IHt]H{H,$H #CuSH H;uH8H#C:H H;uLLH,$o)I/X==HsL*yH,$J>H!z=It$Lt)S5;;::;H9UHSHHHFH5PiH  H9HMH9t] tAH9rU ʈoECHCH{(HHu(S)H[]H菃tHE @U ʈoMK뫸HATIULSHHu, u$MMHHLH[]A\nILHHT$H4$H4$HT$t H[]A\ 6HIH[]A\DATUSHtNHFIHHt&H5__H(tRH5@_H(t0HHL[]A\)HdH5XH8c&[]A\[HL]A\7[HL]A\m{ff.fU0SHH-ngȆH/;H1HHHHH;HC(H:fHCHk CHH[]ff.AWfAVAAUIATIUHSHD$xfo½H$H$HD$8$foL$+HNHD$hHBD$HfoLD$LL$D$p0HD$8D$@D$XH9HrHR(H|D$,ME1D$ H\$IT$HpH;H9H)HtIQHTH9H)L|$pHL$LHLDD$$LL$K6:LL$H$MDD$$IAHEIAH9sHeDD$ H9HHU HMH9E :H9 AMIt$(IQ(L}(D8}H9u+HHx"HE1H+:I?HJLVLH+zL)I9I#NJIMOHLNI9LHzI9I#NJIMWHLVI9LHzI9I#NJIMOHvh1I9LML+ I)M9As I#NJMM HH9u(I#NJALI?HfAH9sNEt@HL HHzH#NJHDAK<HyH9s EHfH9I\$L$H~HI|L`H5ucHU EH9HMH9t |7H9?7H]E D$+EK 'H+Hɚ;H'JHcH HHHDCHED$p<6HIL:IH7EH]D EILHɚ;|H?zZH9Hc H9Ho#H9RH]xEc1H9H@HHHCHHED$p<36HĨ[]A\A]A^A_fD빐IH\=DH#NJH9HHH@H?B Ha1HHL@HvHH9HrN H9H1H9H f.IHj}D1HHHƤ~1H9HD1HHHAMIt$(IQ(L}(A8bHH@AUT$+TH T1H9H -HFN\JLL9I9*L$ HMHHAHNTIzMHDAK|HyH9LECL MIIHDAI HH9EfIHJDHvIU(H|t0HMHD$,D$ HMA:fDD$,MAMD$ HEI\$IAH9H/_H9HHU HMH9ZHً|$,HHLM̉|$ IsfHCHHI|LbHFHH<IHQH9HT>HIT?H9HIHH9D$,HME1D$  E1IQHTH9:AIIHt$HʐT$@IQ(LL$@H|HHT$8H|$E$HHt3MdMtWL$HHNjD$,M̉D$ HHE1!HxHteLH I9*HsRHHuHT$HDD$$LL$葏LL$DD$$RHIAI\$YE-0@AWHGAVAUATUSHHD$GDŽ$L%\IIտ0%|HHN3L1LHIHH!3{HC(H3fCAoWAo_ HCAog0Lc AN)$)$$)$ IV HH9\$t`Iv0H\H9HLI9tH$Hvt5ANH{( ȈAon Iv@kIV0HSHAW($A G,рfH$DŽ$$folƄ$0H$$HS(HCH|DH0H HH1HHHH9HCH1HO HCH91fH*^7f/x1 )f/H,LxHS1L1HLHH0yHH'0HSHC(H|HSHH$H$HHHD$*.0L$L$MuM9t/MD$JLMHD$IH|$O IHD$Ht$HHI1HH)IIH#NJOLH1I@E11HD$0L\$8HH|$ HD$ HT$(HD$0HT$(HT$8HD$@HHT$HIHHD$@HH)II H#NJODI|$H1I@E1E1HD$`L\$PHD$PHLl$hHD$`HT$XHT$XHT$hHD$@HHT$HIHHD$@HH)IIH#NJLE1HIAH$LE1HT$x1HT$pHT$xL$HD$pH$H$HD$@HHT$HHIHD$@HH)IHsf.DIQKDHCII=D\H,H?;DIzI-$<.I؍|}AHv<IcIHL[]A\A]A^A_H,HJHe HkH1HH H1H1HHt H1HHHHH1HH1HHHJI<I$<,-1HE1Mu<H{(uHuIv0IF@H| Ht$H$HHH0HHa1$HH{H(_DXuHH+AiE1MLIH,HxJHHtM~C|IF,Mt$u<v5HtuHKHS(H|tIMt$H{(t뿉11H߃>jH$Ht$H$HH艖BHt$HH- H%QH5HH8~E1U!‰Hk)H:)#BLrMt]1IHtNL-j A#EuKI I}uL-k A#EuhI I}uLLI,$0);c)T)IuLyg)HPH5.EH8+H >IuLy.)H)H HHH9u()V*)b)7*SHIM8H#NJE1H2H0AH9DH7ILPHrLHL9I#NJI9ADkHwILPHrLHL9I#NJI9ADIHwILPHrLHL9I#NJI9AD'HwIvdɾH#NJLLMIL9M9ADLHL9t!@1LL9r^H[f1M9sJ J4J IHL9sHL0IHL7M9sJ J IM9tf.IIv8uLH7ItM9Iv8uLHwIIv8uLHwIIv8uLHwIIv8uMLHI9vH#NJJHSH9@t!JIM9s@uLIA1AUAATIUHSHH LcD HC(H@H(HCHH=ɚ;w9H='Hc H HHCH[]A\A]DH?zZH9Hc H9rnHo#H9H]xEcH9ЃDH5PH9w 8*fH=?BH=H=ZH#NJH9ЃAHvHH9saHrN H9rkHH9Ѓ H=HƤ~H9ЃH=H TH9Ѓ  ff.ATAUHSH t" HGf GH[]A\H5NH9w D f EE1HEH(HL$D$~|$HE(u HNHE Eff.AUIATIUHSHH uH5LNH9w k)L1Mx?H 1Ɉ1HCHC(HHHHCNHLH[]A\A]H?I9)Hڹff.fIH1H!HG ȈHG(H@H0HGHH=ɚ;w)H='whHcH HLHGbH?zZH9svHc H9rNHo#H9H]xEcH9ЃH=?BH=H=H#NJH9ЃmHvHH9HrN H9HH9Ѓ .H?H9'H޹H=HƤ~H9ЃH=H TH9Ѓ  fAVIAUATMUHS HHRHxnH9HKHsHU H9HLEH9t H9H}( ȈEoCHs(EHSHUH[]A\A]A^ HsHC(H|tHAHLH%HHt#1HEAtAV$LHHNTEt []A\A]A^A$€@HEA$LHet E<[H1]A\1A]A^LLHH@uLHH[]A\A]A^6LH|fAT1USHHH=nLd$L %Hl$HHmEP1HsLƒ HH%HLd$ HHt#@ %@%H{0HL7 H|$$iHH[]A\]HH5%H(g-%(%ff.u u u t f.HW(HGHH|H$H:Ht1H1HHHH9s>HFHHH?H$HzHt>A HkH1IHuA H1HI1HIHuHp$HD$0HD$ H9LK(LkH=EHEK|LCHCHnLHaMLHx`I HH9 9ItDIDH9D#It.IDH9D IEItH I9 HsH-A@HSH<$Ld$0LMHH_D$0% H<$LdHIHH9 LL4$Ht$ HLtAHI^$ D$AHh[]A\A]A^A_D\$/DT$._HILϹLLL$|LL$DT$.D\$/HKHSDfInoKPC LH|$0HL$LeHT$LeLL$XID$0L$8D$HV`HT$HL$HH9 uIHDH?@8IWHHHHH=ɚ;w!H='@HcH ҃MH?zZH9Hc H9MHo#H9aH]xEcH9҃HcI9D$(L$ H<$HhMMHH[]A\A]A^A_aHHJH HkH1HH9 H1HH1HHHH=҃W11D$E1L$ t$(HH$MLHHߒHuHt$ H<$HhLL[]A\A]A^A_MoM+/I} `HI9LH$t$ HLLH諸81ɺt$ H<$Hh[]A\A]A^A_|$(t AvH<$HhL[]A\A]A^A_dHD\$D\$D$D$ H=?B H=H=҃HLLLL$xLL$DT$.D\$/HvHH9wH TH9҃ H=҃~H<$MLHH"D$(D]D#EA1D$|$ HNgmcEuHUHE(H|Au(11jEuHUHE(H|JAu؋t$ H<$Hh[]A\A]A^A_AIA@H t$ H<$1ɺ&H-}8HD\$(HD\$(tLD؃k…pCIH,$LHt$ HSHH)]HEIL<$LHHSL|H)IGA$ D$AA@uH#NJH9҃HH HHH9u$fDAWAVAAUATUHSHH(H~HFIωуL$ L$uuI%HMM@L9ILH]IHY *A@$ Aƀ LHSHC(HtL9{Hɚ;H'&Hc1H ƒ1GLCHILH+CH D$ M9A  HL)LmH([]A\A]A^A_fJ?HD$Hɚ;>H'HcH ҃HL$FLSHIkHC(HL$LT$J4FLT$HIsHHPH!HKY8m4IHLH Li'M)MfIHIHIVH념HRH .HRHHBzՔIHHi€I)MDH.H H H͕PMB IH@zZH*HI)MfHMIHHHI)I HMMHvHHLHD1AUA$ A$A~EImI\$fHnflAD$H[]A\A]A^A_fH VH$ IHvHH$HI)M@HHLH2HS;\HHH]xEcHHI)MfH(\(LMHHHHHHI)IcPHiH v*H H͕PMB IHH@zZH*0H ?H$ IHHvHH$HHT$LML|$M)4@HIH TH!HI)MHH mHHHBzՔIHLHLiȀM)MHIGwILHHHd HHI)MHaw̫IHHiI)MH3"[3/#IHH%HI)MHIHH TH!Haw̫IHLHLiM)MMLD$@2@LrIT$M,Ll$HI9HbH,$MI@" H$MO(Hp(H+IJ*mH H4HHHHHH9`1AcIbIHuHI9u?DHHHHH$HDŽ$HL$H$L$L$LLD$ HDŽ$L$1LLL$(H|$HT$ HHH)HHLD$Ll$0ILT$`Lt$hMLl$`LT$hILt$pHEHA$1LƃIHHL$@HLT$H$HHLT$L$HL)ID$IM9t$Z@2t$[1LHT$@Ht$HLnVL)LjL9=M9X/HT$@LL$8AMF(L$HT$@LCAHT$@LnCH\$H11҉H{H<$HOLH+ DHD$@HT$@LLT$U)LT$tLKHT$@LC{UHH ZNSHHHcHfHw txX[]HvH{(HsHZH[]`HttHttHtH(HHt 1H!HtHvH(uzÐRLMIcLDH9HLGHIGwIHHHB0Hd HH)I9HIxHS;\HHHB0AH]xEcHH)H9mHWx/e9LGHH3B0Ho#HH)I9`HIxHu@HHHB0AHƤ~HH)H9TH͕PMB LGHH*B0H@zZHH)I9SHЄK8IxHH)B0AHrN HH)H9^H3"[3/#LGHH%B0HHH)I9H$ IxHH$B0AHvHHH)H9HLGHH!B0H THH)I9HIxHSZ/DH HH B0Hiʚ;AH)H9/Haw̫LOHHB0HiH)I9HBzՔMAHHB0HiҀAH)I9H4ׂCIxHHB0Hi@BAH)H9HLGHCxqZ| HHHB0HiҠH)I9HKY8m4IxHH B0Hi'AH)H9HLGHS㥛 HHHB0HiH)I9THIxH(\(HHHB0AHHHH)H9HLGHHB0HHH)I90A@I@A0II~IIIXI*II:I.HH𿀖1.HLA0HֈAFA.ImH1.LAH@zZH0HֈA.H H1.HyIrN I0HֈAA.I.HQJH1.H LAH0HֈAH1.H LAH0HֈAA.IHA@B1.IHy0HֈAxH1.HyIvHI0HֈA_H1.HLI0HֈAHAʚ;1.IHy0HֈAH1.LAHd H0HֈAuH1.HyI]xEcI0HֈAH1.LAHo#H0HֈAH1.HyIƤ~I0HֈAIeff.fH#NJ1Ht#HHH9tH11HHH9rݸfDATIUHSHHHt#@ @ H{0HL~H[]A\fDAWAVAUATUSHHHt$H,HIHZ1H9H#NJHHHHD$HH<1E1H4$L$$HHT$Ll$I9LM1LtHi9HDLH)HHsHHH[]A\A]A^A_I#NJHL $IHHD$HH HHD$0H1HT$(1L|$(HT$ Lt$ LLt$0HL$8L|$8L1LL $HDIHLH)HHs_1XATUHSHHH(HuH|HH9]HHH HMIH6P^Cy H)HHHMH?H)HHHBH9tHH5MHE H9HMH9tE tH9H]HL[]A\HT$ H"HI%E1fAU1H  ATUHHHSHGHpH^D$ HD$(H\$0H\$(P1LL$8LD$(aZY[HT$ H9JHD$ H:H(HT$ Ld$0Hr LH|$(H9HHt$HwHL$ HT$Ht$wuH= THHLl$Hl$HxLLD$HUIuIm HmuH#t$H|$ eWuiHhH[]A\A]TxND$THT$ -HzH5xH9jPHH5H81H+uH1蘩fDAVAUATMUHSHH>Lj@L9i+HCH HH)I9HVHF(H|HFH~HL)HH9Hy;LLHH) IH{$LmwxC$HoBHcHLHǺSLmHE1HEHH9C|{H{HWH+H9|kA $HLHH[]A\A]A^ aIw 7HEM@IvH}(Hu&HKHTHEH;~HLH[]A\A]A^5L1H螘fMtEtHEMt EtMuHEH}( 1HHMtܸ!HtPIB#MHHHT$H4$yH4$HT$t H[]A\A]A^*!HLH[]A\A]A^VH}(6@USHH(FHH(1҃xPHsH|$Hl$HFH=BH1葥HHH(H[]ff.SH1H H=/ HT$ŧHt$HtH.t.H Hߺ[ۊ6HHH(uf.AWIIAVAUATUSH0HHE1E1I#NJIJ*mH$ H\$XE1H$HD$Lt$0IL|$PMH5Yfo%HXLIH$HpH$)$H$HH$HH$HNH$H9t  H9fo HHDŽ$H$$$HD$HHD$ f.D$Ll$H$LLHHDŽ$ M)LLH;9$ A $AH$ fofƄ$0H$$ $$$4 H$H$H|> HL$ MMHL$HL$<YGLLHw8$0DŽ$\$/ L$HO\-L$ IHI@fH$XH$IgHJ*mD$LHT$ MLLLFHl$l$HHH$LS HT$ MLHH@F$+LHzLLLLL$MELLL3,$A $Ay锤t$LH|$@11dH$HH$XH|uLLH|$@L$0u$lLLL#KLLL+H$H$H|LHd$ LHHJLLH%+ H$u $IH\$@LLHgJH߈$AU(Iuy$0uH$HH$XH|tz1Lnd8ILLpA bA YA MJH$n$ULLH$L.6H$#$ILH$HH$HH$XHtgH<$IHq$0wH$XH$H$ L$$0H$X$0HH$PD$/KHHYH$XIv=H L9LLHHL$ +H$HM(LL΃HH$ ~H$HLHH%~H H<$MMHHHHD$ H|$阢鿠{fAWfAVIAUMATIHHD$foHD$@D$0HD$8D$(uhucHJHB(H|L|$MHMHHLD$<LLL'HHA\A]A^A_MLLHT$H4$AuH4$HT$t1LL]HVHF(H|uL¾>OLLFLLL 'oH|$8BD$KDAWIIfAVAUIATUHSHIuH$$foH$Ƅ$02HJ$IRLL$PD$IE(H9I@|$LNH| IEHH)I+BiMI9 H9 IZII)IM9M9H5IG I9IMH9tA HH9v L9I9]PH5HE H9HMH9E _H9$H* IR(IEMM(HM(LMG(HGI1IDݐH/lHHHHiDݐHI8H)HHAIFH5IO Ml$I9IMH9t ?H9MgKTHɚ;H'3Hc1H ?KT D$IGITUAIWI;RHD$P1Lo^1H`^L9Zf.I9lM99@H51HE H9HMH9pIDH?zZH9mHc H9tHo#H9oH]xEcH9HNfDH1IIqH?B Hw1HHDKT D$IGITUAHIWI9HM(HeH5/HU EH9HMH9t H9WH]HTHɚ;H''Hc]H H D$LuHۈEHTSHU$<@H[]A\A]A^A_fDH#NJH9HHHf.H?zZH9Hc H9=Ho#H9H]xEcH9HH D$LuHۈE$HSHHU</驞f.H?B# Hw1HHHvHH9XHrN H9HH9H fHvHH9$HrN H9HH9H ffDK|Ml$uI/AE1H5IO I9IMH9fD1HH1HHkHƤ~H9H@HƤ~H9H,@Lh1HI9_Lt$`Ld$hLL$ HL$pL|$xL$H\$XLH$LI2Hl$0LHݐH#NJHH|$ HH E1E1Hֺ9LHLH1H\$Ht$VH|$0LMHi9HHD$LH#NJH)HH|$ HJ aE1E1Hֺ9LLL$@HLH1H\$Ht$H|$0LL$@Hi9JHD$H)H!H\$XLt$`HILd$hHL$pL|$xH$L$vD1HH#1HH{IIL\$IcIJ(IU(Hu(I(ME/1MG(AL\$H TH9HHH H TH9HHH H#NJH9HHHH9HT$PLHH="t$11LUH#NJH|$ IHH E1E1IѺ9MIML1LD$LLL$-LD$HDHi9I)HcLH\$XILt$`Ld$hHL$pL|$xH$L$HHL$PLHH)HRvLLu!H|HHI8Lt$@HHL$`L|$hL\$xH\$0LMLd$XMHl$pLH#NJHHILHD$Lt$HT$L|$HL$ Lt$ HD$(L|$(LLL1HDIHLH)HsIH\$0Lt$@HLd$XHL$`L|$hHl$pL\$xHHl$0H11H$HH$9L$H$L$H$L$LL$1LD$LLL$HLD$HDHi9I)HuHT$PHؾEHM(!HH)HHL$PHLLT$`H$LD$hH|$XetH|$XLT$`L\$hPH$IZL`I)M9u I9ɖH5IG II9IMH9bK|ID$HILIH@HtIILLH9Lut$11LCRHD$PH)HL$PLH$H|$XLD$`osH|$XL\$`_IEH$HH)LbM9u L9ݕIMMmH1H$HH$H$1L$H$L$L$L$8HT$PLL\$`LT$XLT$XL\$`IZXAWfAVAUATUSH( Lv(Hn$8fo5H$ $foH$XH$ $foƄ$00Ƅ$0H$(H$HDŽ$Ƅ$$H$$I|H|$8H$ HFIHFHIoFD.HH$H'L:L HDŽ$  LHAHLfH~H9HHxsH IH H9aHtPIDH H9EHt4IDH H9)HUHtIH  HsH|$81ɺ1tOA $@HH9Hc H$hHXLIH$pHOH$xHH$HH$H$JD8H9HLH$`HD$8H9t[HH9HMHHD$8HP H9t H9H\$8ALD LH{(HkC_HHD$8HXHH\$H$H)HPH$`H9tH=ɚ;H='sHc1H ffH*HD$8Yr\rHPH)H*^MaH,HH9HHMH9H$1ɺH1HD$MHCL$HD$ H$ HD$0H$ HD$PH$HD$`H$`HD$H$HD$XH$0HD$@H'HcH HLL$`LD$fHHL$XHt$HDPfo%HT$8Ƅ$0H$HD$PƄ$0H$HD$0DŽ$H$$$$$$h $|D$<yL$<9D$$0DŽ$D Ȩ H$HH$LlL$ H9HW HD$L\$HD$(I@7HD$(Mc(LH(Ho I<$I IJ*mHIF-LH5HM_Mt$IH?I?H#NJL0I!HJ*mA8L[HKL$H$LLH9M9bHHxlI H4HH9aHtMIL2HD7H9HHt4IL2HD7H9/HrHtI HH9Hs|$8Hl$t6MLHHL$wH4$L2H{( 1LLH!HH|$0H|$ HD$ HC$ww$w$w$sw$Rw$vHt$ LHH$HDŽ$4HH[]A\A]A^A_H9EkADEHl$MLHHD$DIYHLHKD$D $,AuHL$PMMHLH3.AHHkDJH9jA`HLLEJ-MvIIVLDL$?L)HHM)HLlDL$?HIHLPDL$?Ht$(HtH荋 I@H HAAEkAA)AEkAu0kDHwHL$ 1(Ht$HH-AAA)DGAPtHHHH\Hkt$(H<$謊HD$87Hl$GtAV1AUATMULSHH D$H9tLl$ILM TD$uMLLHH\D$ EH []A\A]A^AUATIULSHHLl$ D$ MSLLHD$ EAtH[]A\A]ff.fHO(HGH|tHGHttH1AWAVAUATUSHH|$`Ht$xM9uLIH1L)LMHD$JL$HD$XLpHDHHHD$@H#NJHHD$pI?tL$L$I?tHL$pLHLHL$pLHLH|$K7L$MI#NJHD$hIHD$@HD$I,@Ll$@HD$h11LD$PLMeLLLL$0]LL$01HD$HD$(ILLd$LLT$HIH)IIEHD$ HLd$ HT$Ll$LLLl$(1L\LL$0LT$HLD$PMLHM,H#NJI)L9HL$XLMHJ*mqHĘ[]A\A]A^A_H#NJH!H9HL$@H9AtL1M]H#NJLH9rHtjMMFHL$pH|$xLL1"`HHH#NJH?HHHH!H< HJ*mLLHXHHD$XL)MHH#NJI?LIHH!N,LHLHlHcH$ IEIH$ IEIH҃+HƤ~H9҃H҃Hk Lk H TH9҃ H#NJH9҃ItISH*ZH|$0HHD$8LD$Ht$0HL$LHYA$LdH$Ey HH$H$IL$I+ $HyHtH9cHH$HDHI).IHl$L\$0L HHt$(LL\$@YxL\$@LHzL$H$-HL$HT$8MHHuHT$8MH$膫HL$MHHHGu3MHH$GLHL\$(藑L\$(oHL$ Ht$0MHHtHt$ LH!$t)$uH$H$H|t>1#uH$H$(H|t3$ƺH|LH譪gILL\$(+IH aL\$(HD$IKL@Is(H@(HtgHLL\$(2L\$($wL\$(H$h}L\$(H$$L$$H$HHLHLvL\$(IC(HD$(HD$H@(HD$@IvGH L9_Ht$(H|$@LL\$hL$5L\$hHI4`HLL\$xLL$pHT$hb/HH$*IH_H|$h/HT$hLL$pHL\$xH_HT$pLL$hM*IH_HT$pL\$xHLLL$hHt$@IHT$(L\$hu/L|L\$hufHAU1ATUSHHH5sPH8D$ HL$ 1HT$(JsHT$(Ht$Hٿ+sHT$ Ht$HٿsH=yHH sLl$Ld$HKHxLD$ IT$Iu?Imt)I,$t,t$ HrH8H[]A\A]L'Lff.H1XG,Hff.fAU1ATUSHHH5SOH8D$ HL$ 1HT$(rHT$(Ht$HٿrHT$ Ht$HٿgrH=xHHarLl$Ld$HKHxLD$ IT$IuImt)I,$t,t$ HuqH8H[]A\A]LLff.AW11AVAUATIHH5USH(HT$HL$Ll$MosI}HwH9H0I}HAE  @Im0M}MoLIHsHM~=ۃHXIfD}AWD~jHڈCHHL9uLLjLH_H(H[]A\A]A^A_éu5H5LUH9rLLLHHOUHHLH0 HHH9H+HRrHHLHHI1HHL$LIT$D$ݹHHqt$L5qAE rIcT$8ID$H)I9E(rLq1ImHHADDxBHڃ0hLh1Ƀp\MLs؃~wHAEII9uAA;vOHL$/HL$uFHL$xHL$L0HS8bHڸ H}S8tL tImHaLAE *ff.@AU1ATUSHHH5JH8D$ HL$ 1HT$(HT$(Ht$HٿHT$ Ht$Hٿd9qH=Et`HHpLl$Ld$HKHxLD$ IT$Iu@Imt/I,$tt$ Hu"H8H[]A\A]LLHmuH1f.fAV1AUATUSHHH5IH@D$ HL$01HT$8LD$(HT$8Ht$ HٿlHT$0Ht$HٿM#rHT$(Ht$Hٿ.H=s*HHrLt$ Ld$HxLL$ Ll$LCIL$IvIUI.tFImt5I,$t$t$ H~qH@H[]A\A]A^LPLFL<H|$ H/qH|$H/t11AW1AVAUATUSHHH5oHHHD$HL$01HT$8uHT$8Ht$(HٿuHT$0Ht$ HٿmuH=qHH}uLl$(Ld$ LpL{LD$LLIT$IuLD$/HT$LLImt7I,$t&t$Hv uHHH[]A\A]A^A_LLAT1H wUSHHH1HHH-OHD$HD$0T$HHl$0P1LL$@LD$HY^ vHT$8Ht$ HٿuHT$0Ht$HٿuHT$(H9u|H=p裻HHuHD$Ld$HKH}HPHD$ HpMu_LD$ H|$ H/trH|$H/t`t$ H7EuH@H[]A\Ht$HٿjtID$ILL$ H?I,$uuDATE1HHUHSHHt$DL$wH=o褺HHvLd$HL$HUHxIt$I,$vt$HUvHH[]A\ÐAU1ATUSHHH5SEH8D$ HL$ 1HT$(vHT$(Ht$HٿvHT$ Ht$HٿvH=nйHHvLl$Ld$HKHxLD$ IT$IukImt)I,$t,t$ HuvH8H[]A\A]LLff.UHHSHH(Ht$"vHl$1҃{PH|$¹HuHmHnvHYvH|$`H|$HOoH(H[]ff.fUSHHuH=fHHH95fH=fdH;5fH=fIH;5fH=f.H;5fH=fH;5gH=fH;5gH=gHffH H8H;pu@XHU !˃D1H[]DH1fHeHeHeHft@H!fdHJH5H8 zH|$H|$9UHSHQ;0t;HDBHtHHDJuHE8HEZH[]H뺐HH=dZH;5dH=d?H;5dH=d$H;5dH=d H;5dH=dH;5eH=dH;5eH=eHdH H8H;pu@@HW#u2HcIHHfHIdHcHaIHHHcHcHd|@H)dlH|$H|$`ssHw H g SHH HuHc H9rHC1[HDHH5:H8 [UHHSQB HHtHc HH9rH] 1Z[] HtHGH59H87 DSHH HuHwCP1[HGH5:H8 [fHcW4HoHHff.HcPw Hc87 ATUSHH,Hu{(HyIHuHcS4HCHsH=~LKLC H ЋC8HSATUPCPP1 HMH HQHUHuI,$uH[]A\ATU1SHuH=RaItLH L)ILIH HII1MI M)I 1MMHHLHII9MLH L)ILIH HIH1MI L)I 1LIHHLHIH9Mu|LLH L)HH HHE1HH H)AH H@H@MSHcH9ZHLLI)IMIHH)IIIpHI)IMIHH)IIIHI)IMILI)IMI_H[]A\A]A^A_IHu>H~#HGH##HHHF HUH DLӅWpHH)IIIMd MdHH)HIH$H)HH|7Md:H\ H\_HI)IMILI)IMIfoooxooooofHRIAVIAIUI!SI!HH/DL1HHIH)@MMjHHILIH"HILHL)HI"LH1HHH)@H"HIH:oHL9HHH)HHH9HH"HHHHH)YH"HsHH1HH)@H"HHHnHKHBL99HHHHH@MHH)MOHHH9HH(HHHHH)H(HsHH1HH)@H(HHHmHuHu L9WL)HLHH HHH HH1HH H)H HIH9HHL9HH H)HH HH1HH H)H HHHHuL9s HL)HHL9ILIH(HILHL)HI(LH1HHH)H(HIHlHu.L9s)Hu$HH)P[L]A^L)IL)IHHFHL3L)IQHlHL)ff.HHE1HHH)AH H"HsjHIHH"HHHHH)HH"HHE1HHH)AH"1H@HMlHusH9snHuiHH9HH(HHHHH)HH(HHE1HHH)AH(1H@HMkHu HuH9rHH)HH IHH HH1II H)@H 1H@HHuHuH9sMuMD0fDAWAVIAULATUHSHxT$41HH<$HcH|$PHD$(HHЉSHD$(HL<NT=K:H HD$H!H"H!IL98HD$XLd$`L|$ E1L|$8HD$Ld$Lt$@HL9ILIH"LIMLIL)IH"HIE1MIL)AI"E1LAHMjMiM`H9W1HII)HLDI9jHD$HIII)HsMMIL9II"MILLHM)HH"LHE1IIH)AH"HIM-jHH9M1MLH)HLEI9iLHd$IIII)HLLMYHM9IIH"HLIMLIL)IH"HIE1MIL)AI"LAHEM1iMcH9ZMQHHH)HHEH9hHHd$IIHI)HLMHL9ILIH"LILLHL)HH"HHE1IIH)AH"H@H@MhHH9MH!H9rH)HD$JH$O$ J4IL9L$ H$O 1J HLHH)HHDHD$J<H9gHH9HD$IIII)H)MHL9ILIH(LIMLIL)IH(HIE1MIL)AI(E1LAHMgMH)HHL9ILIH(LILLHL)HH(HHE1IIH)AH(H@H@MSgHuMu H9rH)HgIL9II(MILLHM)HH(LHE1IIH)AH(HIMeHuMu H9hH)I]HM9IIH(HLIMLIL)IH(HIE1MIL)AI(LAHEMNeMuH9s MH)HLLH M9IIH LIE1MI L)AI E1LAHMMuMuH9GLH L9ILIH HLIE1MI L)AI 1L@HM HEH9L$PHt$8L|$H|$(ILHHHx[]A\A]A^A_LH)IIIDM|MtFM|M|ZLHIH)I!HH)IIIzxSSSSSSf.AWIAVA1AUIATIULLSHHHHU1Ht$ T>HHTIcH}t$ LL$D*DufInfHnHflEMH H"L!L!HIILIH"LILHL)HI"LHE1IIH)AH"E1HAHMTML9MHI9HDHE1III)AHu}HQHL9ILIH(LILHL)HI(LHE1IIH)AH(E1HAHMTSMRHL)YHH IHH LHE1II H)AH E1HAHMuMHH[]A\A]A^A_OLff.AWIHIAVIAUIATIUSHT$HcH,>J<Ld$1H H|$I4:H!HD$H"H!HD$KI1III)@H|$H|$HHHHH"LHIIH)H"HHM1IL)I"1LIHRH LIHM H9 HHH)HH"HHIIH)^ H"HsILE1HL)AI"LAHEMQM H9 H HLHH~L9H>M 1MtMd HMDHVLII)HLDI9QLMH)I9rBIE1MALH)MIDH9}QMI|I)I9;I3HHL9ILIH(LILHL)I(HLI1IH)H(HIHPHr LIHM` H9W HHH)HH(HHIIH)f H(HsILE1HL)AI(LAHEMPMuHu H9WH)HLHH HHH HLH1II H)H HIHH#LIHMH9HH H) H HHH1II H)H E1HAHH`MuMu H9HH)vI(HLHJHAH"IHH}ItLd$M11AufH@^_`]LLHH)L9rH9sIIHI HHVNfMHйLHHLH)H1L9H9sII LMHHr~Hf/OLHHLH)H1H9%II LMHH3H2fD/HvHuxh[]A\A]A^A_Ld$H|$IHt$MMMKD-Ll$I8IHD$L\$K+O4M$1ILHd$IIII)HLLM^HM9IIH"HLIMLIL)IH"HIE1MIL)AI"LAHEMi?MhH9_MVHHH)HHEH9>HHd$ IIHI)HLLMHL9IIH"HLILLHL)HH"HHE1IIH)AH"H@H@M>HMH9H H9rH)HD$JHD$O, J4IL9L$(HD$O 1J HLHH)HHDHD$J<H9A=HH9HD$ IIII)H MHL9ILIH(LIMLIL)IH(HIE1MIL)AI(E1LAHMU=MH)HHH9IIH(HLILLHL)HH(HHE1IIH)AH(H@H@MLLI$VLH5,LI$а{1H螯HHHfoCEH@ LIH5@HEHHB(H"Lb8HB0BPW1H%HHHfo DH@ LH5H@(H-HH!HHB0Lb8BPH}t2H}IH/HuHL豯]HHH3H"1L%H-pM4LTHDHHҲHLLTHH@uHH5LײHH5LޮuZL[]A\A]A^A_饲fUHSQHt3HH3HHެtH CHCZ[]tff.fJff.SH=1AHmH1H=C,H聫HH~ HD$hHD$`flHD$XHD$P1D$-$)$ G$HWH$AUG$Ƅ$A}tLr@A ^8  =f$AEPĀ 1<^ L$PAEHՀP < H EuA0 HHBDpA}, A}.jAE߀EcI9HLA$H#d L$H9ɸAMQՀLE1 H}LbA $HDOtILH)@.]LL)H)HHC 8UHC(8HE11L|$pMH$LLSULD$8HL$0HT$ sH$Hx软H$_AXHHT$HL$ MLLD$(SLU*LyXZME1ۺ LDH$PIH$AE"L$PH$AHIT$ID$(H|t4$ %鍶QAHBrI|$~L$LH1L$ LM Hc H9(HeI9T$yL$LL$ HLM RL$HT$H(HHG H$HT$`H5L$踧)H|$hH$HT$XH5蒧H|$hH$HT$PH5lLlHEH5H8螙H/JHmHH$.H$H$^uQMuƄ$zL$PAEƄ$$AAuMHHMDq&@0&HH5H811!A>鈱A>VHhH _fHnfHnIUflHJH$PIH$$P<%)<T7Dа$AU@8@8$L$9wALHq@?~A ff.fAU11ATIUHSHXHD$T$ 4H H(H1HT$H51H肗H|$Hu!HL yHHXH[]A\A]fo-HD$D$ HD$HHGD$(fo-HD$D$8JGIHt}H=w>HHtbHH?I9tLHIt$H}HD$(HKHT$ LD$ [t$ H/A:HmuHȓ1$輕HuH= >HHu1ff.USQG u-耊HHtOHH+HuH_HZ[]èuu+H=tHHH5H8i1H=cIH@ATI1USH|$ 2HcH(H]H=8=HH>It$HxHL$ HSt$ H?HH[]A\DG HG@HW0H|ff.SHHHHH+uHD$.D$f.+zHf[f.G t H+HHHfATIUHSHHuMHVHF(H|t!HHiHHLH[]A\)JA|$$tHHitӀ#Ht$Ht$t H[]A\uf.ATI1USH|$ 0HH(HH=]x;HHnIt$HxHL$ HSt$ H9>4HH[]A\DAVMAUATIUSH^H^H)HHF(HHVH|HII9l$ []A\A]A^陯ff.ATIUHSHHuTHVHF(H|t(HHOht3HHLH[]A\HA|$$tHHhtӀ#Ht$Ht$t H[]A\uAVAUATMUSHHIHV(HNH|tjHFHH)xuHd HNHH9Lst/Hku&HSHC(H|tHCHCHI;E[]A\A]A^É[H1]A\A]A^HLH)"IHtHkAU$HLHA$Ѐ @MEA$kfDIڂ7HH+$)HI9|HD1Gu HG(HG HHD@HUHHSHAPHHFH Z[]ÐAWAVAUATUSHHH(H{HŃ.IHE \H=H6HEIMִH}1E1脏HHH=aHE1LL1IHÀ}EMt LNMt I,$Mt I/GMt Im*H(H[]A\A]A^A_1eH|$HEHLt$M-L.HHD$豎IH1HD$H9}/A<H$0Hc赍HH!H$IDHLH{ YIH}(_HQH=@(蘏IH1H=((1E19HHuAUHATI1HHUSHAPLo(HHu=HHC(HHt(HC LH迍#Hk Z[]A\A]1fLk(HKC1A $fATH'UHSLg0I9LLlHDzH1LHLHH@HC(HHf1Hu(HCCHELc HU ЈoMKHEHCH[]A\ff.AU1ATIUHSH(D$ *HyH(H1Ht$HHW21Ht$HLW?H=4HH Ld$Ll$HKHxLD$ IUIt$I,$t)Imt,t$ Ht7H(H[]A\A]LLf.HHAT1H uUSHHHH&H0H-D$ LL$1LD$(Hl$ȱHL$H9C)HD$HHHQHL$HHұHt$ HڿVuHL$HT$(Ht$zVH=[v3HHPLd$ Hl$H{LD$ HD$HUIt$HHI,$HmuHƈt$ H|$6HH0H[]A\HyH59H9.ff.H1AIHD$HTIH$Eu,IK<tA1McL $H<$HHHɚ;wwH'HcH ABɃH|$HHc2IHD$HtHuH<$IBuHr I<tE1AIcH$H?zZH9s|Hc H9Ho#H9HƤ~H9у_HɃNH?Bvg H3HɃ"HvHH9ǯHrN H9HH9у HɃH]xEcH9уH#NJH9уAVLIAUATUH1SHHH IHAHH)H=LIL$IHHt$H|$LLuHD$HO4Hl$IIu=K9,uLHs#H []A\A]A^rI<t1JHt$LI Hl$I9nuHD$IHD$JHtH H9 uHSHH tHC(fo1CHH[H5H9w ~H(HL$D$|$HC(uHHC ff.UHSHHu,u'HH}1HH1[]uHHHT$WHT$tH[]ATI1USH|$ j$HH(HH=.HHIt$HxHL$ HSUt$ H1HH[]A\DQHw1HtH(HFHZuu H(HL$HT$Ht$H<$H<$Ht$HT$HL$tH(u H(H(Jf.SHHHt H/u舃H{Ht H/H[ff.AT1H USHHHHl H0H-`D$ LL$1LD$(Hl$nHL$H9"HD$HHHQHL$HH0Ht$ HڿPHL$HT$(Ht$OܬH=,HHLd$ Hl$H{LD$ HD$HUIt$HHpI,$^HmuHFt$ H|$/u%H0H[]A\HyH5H97H+uH1ff.fUHSHHu,u'HHz1HH1[]SrHHH$LD$SH$tLD$AH[]@AT1H USHHHHH H-LL$LD$Hl$蔀կHL$H9 HD$HHHQHL$HHHt$HڿANHL$HT$H"NH=+HHlLd$H,$I|$Hu;1H{1ɉ$qI,$&HmH H[]A\fATUSHH`6ʉÃA8uNH uIH=…tEkAD$H`[]A\HCH9EtҍTD)ٺtĉʉ9HGH{HHHD$HHE HU@H|$@HD$PHE(H|$0@4$HHD$XHCHT$@HD$HC L$0HD$ HC(HD$(1HD$HD$8\)1H1H)ff.@AT1H 5USHHHH H H-LL$LD$Hl$~'HL$H9iHD$HHHQHL$HH=Ht$HڿKԭHL$HT$HKH=(HHLd$H,$HxHUIt$'I,$HmsH H[]A\DSHH`HF(oRoZHHD$(HR(oFT$8oNHt$0\$HHT$Xʃ@@D$0$D$L$&1H߅H`1ɉ[ nff.HHU1HH=SHD$ 'HHT$ HuHHx7UtcD$ HH[]f. tAUHHʃSHAP TH߃U(Hu AY[]1DU1HH=SHD$ &HHT$ HuHHxTtsD$ HH[]f.AU1H UATUSHHHHJH8H->D$ LL$1LD$(Hl$L{HL$H9`HD$H߮HHQHL$HHHt$ HڿHHL$HT$(Ht$HH=%HHHl$Ld$ HT$ HxDmIt$AbSt CD CI,$VHm>t$ H|$](H8H[]A\A]AU1IATIUH1SH(HD$T$HӮH(H1Ht$HLG1Ht$HLGPH;-H=$HH~HD$Ld$HKH}HPHD$HpMujLD$tH|$H/7H|$H/uzt$HS'H(H[]A\A]1Ht$HH+G_ID$ILL$HYI,$uLywDU1HH SHHHHHD$LD$1H\$xHD$H9t_HxH5H96H=x#HHt_HD$HuH{HL$HPt$H|$R&u$HH[]HD$HtH(uH+uHx1U1HSHHHt$ D$ tT$ îHɮuH[]HAWIAVIAUATUHSHH8 HVHF(H|Ld$@A, LLD$dsH$0fofƄ$0H$(H$0H$H$0H$H$0Ƅ$0Ƅ$0D$p0H$$$$$$$L$x$I9uLl$pHLLsOMI1L$IމT$hHHD$ HD$HL$HT$8Ht$ >`HL$HT$0Ht$=H=HHLl$(Hl$HxLL$ Ld$ HD$HMIuIT$L@|9ImI,$t3HmuH+pt$ H|$mHHH[]A\A]LoHyH5H9鲰H|$(H/JH|$ H/1fHH@H~UHcHSH)HH;w|H[]HưHH(HHIHHtHH51HLHJ4HHİH5ʰHE H9HMH9H]HHE(H|vZDGаH'Hf.U1H 6SHHHH HH-LD$Hl$mHt$H9t;H~H.H9}HH{HHqHH[]HD$HeHHt$HQHH묐u'HWHG(H|tHGHGHH9F1ÐG1H'Hf.Gt H HHϫHfAWfIAVAUIHLATULSHHhD$IHD$`foL$0HD$(D$ELd$0LIIULHD$TH9HLLHHD$0AG,L|$LLD$\MLLHHxLLH%HLHHy<$I$1D$L% E @EHh[]A\A]A^A_ff.@Gt H˪HHHfAWIAVAUATIUHSHH HNHV(H|0H5L-eMoMoILH?L1HHH;EǮLl$ }, HLD$DmH$foDfƄ$0H$H$H$H$H$H$Ƅ$0Ƅ$0D$P0HD$x$$$$$$L$XD$hI91L$D$HHEHHD$HD$HI;FA~,pH$fofƄ$0H$H$H$H$H$H$Ƅ$0Ƅ$0D$P0HD$x$$$$$$L$XD$hM91L$D$HIHHD$HD$TLHL$H9HD$H+HHQHL$HHEHt$ Hڿ!HL$HT$(Ht$!͠H=HHLd$ Hl$H{LD$ HD$HUIt$HH`I,$Hmt"t$ H|$`|H0H[]A\HSHyH5H9 ,fAWAVAUATIUSH8HL$LD$H ЃH~HLmMHFH9EHHHuH9HLID$ H9'HC(L}(Hl$(A HD$J1HD$ HD$N KIHH1LIIHCHHH HI9"Hl$(Iɚ;fI'I?B InHAE1L5HA -L1IIHI1HIHHH HH tKID9Mcɹ H=zH1HHJIIA~IL$(HD$ ILHuI9A$ЃA$1ID$HH_It$H9HLID$ H9L}Ht$H8L[]A\A]A^A_#HT$H8L[]A\A]A^A_H?zZL9sWHc L9wHo#L9HƤ~L9ӃxIcI ۃ`HvHL9HrN L95HL9Ӄ H,L1A HM-L1IIHI1HIHHH HH tIHM9uIT$(HD$ IH,H|m8IۃH TL9Ӄ hIۃWIۃFO 1LHHE 1HH*uNIf.AT1H EUSHHHHH0H-D$ LL$1LD$(Hl$NHL$H9HD$HȜHHQHL$HH Ht$ Hڿ[HL$HT$(Ht$:H=6HHLd$ Hl$H{LD$ HD$HUIt$HH`I,$GHmuHNt$ H|$H0H[]A\HyH5H9›.ff.AWAVMAUATUSHH8HL$H ЃH~ILmMHFH9ELHgHuH9HLHC H9ID$(Hl$(A Lt$ L}(HD$J1HD$HD$N KIIH1LIHID$HLH HI9Hl$(Lt$ Iɚ;bI'IcI EAHAE1A L-H1IIHH1HIHHH H1H9IE9Mcɾ H=H1HHJIIA~HK(HD$ILHuI9/Ѓ1HCHuHۍHsH9HLHC H9HHt$H8H[]A\A]A^A_pLt$ H8LH߾[]A\A]A^A_HJH?zZL9Hc L9ڙHo#L9HƤ~L9EAAkI?BA IKIEA8H;LE1A LI-H1IIHH1HIHHH H1H9u3IL9uHS(HD$IL4BnHL$H9HD$HMHHQHL$HHxHt$ HڿHL$HT$(Ht$+H=HHLd$ Hl$H{LD$ HD$HUIt$HH`I,$HmuHBt$ H|$XH0H[]A\HyH5H9I.ff.AVIAUMATIUHSHuOMLHHLu|HH裞t}H(HT$|AT1H uUSHHHH$HPH-cD$ LL$1LD$Hl$Hl$$Ht$H9HD$HHHt$HQHH|Ld$ H LH|$H9t|D$DH=HHtrHpHSLLD$ t$ H|$uJHPH[]A\H~H H9iH'|H*bH5;UH8{$1HmuH1&$@AT1H USHHHHĿHPH- bD$ LL$1LD$Hl$Hl$)#Ht$H9~HD$HHHt$HQHH{Ld$ H LH|$H9tfv{D$DH=HHto1HpHSLLD$ t$ H|$xuJHPH[]A\H~HH9lH&zH`H5SH8#1HmuH1"HW HHzH+xl#ff.HWHHzH+xL#ff.ATE1HHUSHHHt$DL$zH=HHdzLd$HL$HSHxIt$ I,$ezt$HU@zHH[]A\ÐSH~HH5!H9zHH[ff.@1G(H_Hff.@AU1ATUSHHH5WH8D$ HL$ 1HT$(2$zHT$(Ht$HٿqzHT$ Ht$HٿczH=eHH]zLl$Ld$HKHxLD$ IT$IuImt)I,$t,t$ H%yH8H[]A\A]L L ff.AT1USHHH5VH HL$HT$:#yHT$Ht$HٿyHT$HHٿyH=oHHyLd$H,$I|$Hu觟1H{1ɉI,$tHmtH H[]A\LHfAT1USHHH5%UH HL$HT$Z"GyHT$Ht$Hٿ(yHT$HHٿxH=~HHxLd$H,$HxHUIt$3I,$tHmtH H[]A\LHDATE1HHUHSHHt$DL$xH=}HHxLd$HT$HxIt$tcI,$t t$H^xHH[]A\LYHHHHt$7xHD$HDATE1HHUHSHHt$DL$H xH=)}DHHwLd$HT$HxIt$tsI,$t t$HwHH[]A\LAV1AUATUHHH5RSH0D$ HL$ 1HT$( wHT$(Ht$HgwHT$ Ht$HbYwH=C|^HHSwLd$Ll$HT$ HxEt$IuAt CD CImt+I,$t.t$ HvH0H[]A\A]A^LLwDATE1IH={UHSHDL$ HtBHxLHL$ HHUqt$ Huu HH[]A\H+uH1H ff.U1HHSHH={HD$ HwHuHxHHT$ At$ HwHH[]AU1ATUSHHH5PH8D$ HL$ 1HT$("wHT$(Ht$HٿwHT$ Ht$HٿtwH=UzpHH{wLl$Ld$HKHxLD$ IT$IuoImt)I,$t,t$ H wH8H[]A\A]LLf.AV1AUATUSHHH5OH@D$HL$01HT$8 HT$8Ht$(HٿHT$0Ht$ HٿrvL%SyLkHHvLWIHvLt$(Ll$ HpH}LL$LCIMIVI.uLImuLt$Hu71LH=HrI,$vHmvH@[]A\A]A^I,$uLPHmuHA1ff.fAWIAVIAUMATIULSHH231 HQHA(H|t8ILL荪HLL_HHL[L]A\A]A^A_CIT$ID$(H|#v@ 1L MH[]A\A]A^A_@t$ILHLDL$u<A$utC1L 1L MHHLL[]A\A]A^A_ALa ff.@ATE1HHUSHHHt$DL$uH=vHHiuLd$HL$HSHxIt$I,$jut$HEuHH[]A\ÐH~H5uvH9uH]UHH(HHHt$WuH|$GuH%UHH/uH(HTHff.fH(HHHt$yuH|$GuHTHH/`uH(HTHff.fH(HHHt$4uH|$G uH5THH/uH(HKTHff.fUHHSHH(Ht$2tHl$HsH}蘧tHSHHmtH([]HSHf.H(HHHt$tH|$GuHeSHH/tH(H{SHff.fH(HHHt$gXtH|$GuHSHH/?tH(HSHff.fH(HHHt$tH|$GuHRHH/sH(HRHff.fUHHSHH(Ht$sHl$HsH}uH5RHHmsH([]HHRHf.H(HHHt$7|sH|$GuHW0HG@H|tHQHH/SsH(HQHff.fATE1HHUSHHHt$DL$(sH=r贽HHsLd$HL$HSHxIt$謦I,$st$HerHH[]A\ÐATE1HHUSHHHt$DL$(rH= r$HHrLd$HL$HSHxIt$\I,$rt$HտrHH[]A\ÐATE1HHUSHHHt$DL$rrH=yq蔼HHJrLd$HL$HSHxIt$蜴I,$Krt$HE&rHH[]A\ÐAU1ATUSHHH5CGH8D$ HL$ 1HT$(rrHT$(Ht$HٿqHT$ Ht$HٿqH=pHHqLl$Ld$HKHxLD$ IT$Iu蟵Imt)I,$t,t$ HedqH8H[]A\A]LLff.ATE1HHUSHHHt$DL$cqH=oHH;qLd$HL$HSHxIt$ܹI,$H8D$ HL$ 1HT$(2 kHT$(Ht$HٿkHT$ Ht$HٿkH=eg耲HHkLl$Ld$HKHxLD$ IT$IuImt)I,$t,t$ H%VkH8H[]A\A]LLff.ATE1HHUSHHHt$DL$UkH=fıHH-kLd$HL$HSHxIt$I,$.kt$Hu kHH[]A\ÐUHHSHH(Ht$BjHl$HsH}(HmtH H([]HHD$HD$ff.ATE1HHUSHHHt$DL$jH=eİHHijLd$HL$HSHxIt$\tI,$jjt$HuEjHH[]A\ÐAU1ATUSHHH5s;H8D$ HL$ 1HT$(jHT$(Ht$HٿjHT$ Ht$Hٿ|jH=dHHjLl$Ld$HKHxLD$ IT$Iu[Imt3I,$t"t$ H蕲4jH8H[]A\A]L'Lff.+ff.AU1ATUSHHH5c:H8D$ HL$ 1HT$(iHT$(Ht$HٿiHT$ Ht$HٿiH=cHHiLl$Ld$HKHxLD$ IT$Iu诔Imt)I,$t,t$ H腱WiH8H[]A\A]LL ff.AU1ATUSHHH5c9H8D$ HL$ 1HT$(GiHT$(Ht$Hٿ(iHT$ Ht$HٿiH=bHHiLl$Ld$HKHxLD$ IT$IuImt)I,$t,t$ H腰hH8H[]A\A]LL ff.AU1ATUSHHH5c8H8D$ HL$ 1HT$(hHT$(Ht$HٿthHT$ Ht$HٿfhH=aHH`hLl$Ld$HKHxLD$ IT$IuOImt)I,$t,t$ H腯gH8H[]A\A]LL ff.U1SHHH5g7H8HL$ HT$(gHT$(Ht$Hٿ gHT$ Ht$HٿgH\$Hl$HsH}uH|?HHmt.H+tH8[]H?HHHD$BHD$HHD$.HD$AU1ATUSHHH56H8D$ HL$ 1HT$(gHT$(Ht$Hٿ#fHT$ Ht$HٿfH=_HHfLl$Ld$HKHxLD$ IT$Iu_Imt)I,$t,t$ H襭rfH8H[]A\A]L7L-ff.AU1ATUSHHH55H8D$ HL$ 1HT$(bfHT$(Ht$Hٿ#CfHT$ Ht$Hٿ5fH=^HH/fLl$Ld$HKHxLD$ IT$IuImt)I,$t,t$ H襬eH8H[]A\A]L7L-ff.UHHSHH(Ht$R=^+- format arg must be str.,invalid format stringdecimal_pointthousands_sepgroupinginvalid override dict-nangetcontextsetcontextlocalcontextcopy__enter____exit__precEmaxEminroundingcapitalsclampexplnlog10next_minusnext_plusnormalizeto_integralto_integral_exactto_integral_valuesqrtaddcomparecompare_signaldividedivide_intdivmodmax_magmin_magmultiplynext_towardquantizeremainderremainder_nearsubtractpowerfmaEtinyEtopradixis_canonicalis_finiteis_infiniteis_nanis_normalis_qnanis_signedis_snanis_subnormalis_zero_applycopy_abscopy_decimalcopy_negatelogblogical_invertnumber_classto_sci_stringto_eng_stringcompare_totalcompare_total_magcopy_signlogical_andlogical_orlogical_xorrotatesame_quantumscalebshiftclear_flagsclear_traps__copy____reduce__create_decimalcreate_decimal_from_floatrealimagadjustedconjugateas_tuple__deepcopy____format____round____ceil____floor____trunc____complex____sizeof__ctxROUND_UPROUND_DOWNROUND_CEILINGROUND_FLOORROUND_HALF_UPROUND_HALF_DOWNROUND_HALF_EVENROUND_05UPROUND_TRUNCMAX_PRECMAX_EMAXMIN_EMINMIN_ETINYdecimal.InvalidOperationdecimal.ConversionSyntaxdecimal.DivisionImpossibledecimal.DivisionUndefineddecimal.InvalidContextdecimal.FloatOperationdecimal.DivisionByZerodecimal.Overflowdecimal.Underflowdecimal.Subnormaldecimal.Inexactdecimal.Roundeddecimal.Clampeddecimal.SignalDictMixindecimal.ContextManagerdecimal.Contextdecimal.Decimal}~2} тnKin(slocalcontext($module, /, ctx=None, **kwargs) -- Return a context manager that will set the default context to a copy of ctx on entry to the with-statement and restore the previous default context when exiting the with-statement. If no context is specified, a copy of the current default context is used. setcontext($module, context, /) -- Set a new default context. getcontext($module, /) -- Get the current default context. create_decimal_from_float($self, f, /) -- Create a new Decimal instance from float f. Unlike the Decimal.from_float() class method, this function observes the context limits. create_decimal($self, num="0", /) -- Create a new Decimal instance from num, using self as the context. Unlike the Decimal constructor, this function observes the context limits. copy($self, /) -- Return a duplicate of the context with all flags cleared. clear_traps($self, /) -- Set all traps to False. clear_flags($self, /) -- Reset all flags to False. shift($self, x, y, /) -- Return a copy of x, shifted by y places. scaleb($self, x, y, /) -- Return the first operand after adding the second value to its exp. same_quantum($self, x, y, /) -- Return True if the two operands have the same exponent. rotate($self, x, y, /) -- Return a copy of x, rotated by y places. logical_xor($self, x, y, /) -- Digit-wise xor of x and y. logical_or($self, x, y, /) -- Digit-wise or of x and y. logical_and($self, x, y, /) -- Digit-wise and of x and y. copy_sign($self, x, y, /) -- Copy the sign from y to x. compare_total_mag($self, x, y, /) -- Compare x and y using their abstract representation, ignoring sign. compare_total($self, x, y, /) -- Compare x and y using their abstract representation. to_eng_string($self, x, /) -- Convert a number to a string, using engineering notation. to_sci_string($self, x, /) -- Convert a number to a string using scientific notation. number_class($self, x, /) -- Return an indication of the class of x. logical_invert($self, x, /) -- Invert all digits of x. logb($self, x, /) -- Return the exponent of the magnitude of the operand's MSD. copy_negate($self, x, /) -- Return a copy of x with the sign inverted. copy_decimal($self, x, /) -- Return a copy of Decimal x. copy_abs($self, x, /) -- Return a copy of x with the sign set to 0. canonical($self, x, /) -- Return a new instance of x. is_zero($self, x, /) -- Return True if x is a zero, False otherwise. is_subnormal($self, x, /) -- Return True if x is subnormal, False otherwise. is_snan($self, x, /) -- Return True if x is a signaling NaN, False otherwise. is_signed($self, x, /) -- Return True if x is negative, False otherwise. is_qnan($self, x, /) -- Return True if x is a quiet NaN, False otherwise. is_normal($self, x, /) -- Return True if x is a normal number, False otherwise. is_nan($self, x, /) -- Return True if x is a qNaN or sNaN, False otherwise. is_infinite($self, x, /) -- Return True if x is infinite, False otherwise. is_finite($self, x, /) -- Return True if x is finite, False otherwise. is_canonical($self, x, /) -- Return True if x is canonical, False otherwise. radix($self, /) -- Return 10. Etop($self, /) -- Return a value equal to Emax - prec + 1. This is the maximum exponent if the _clamp field of the context is set to 1 (IEEE clamp mode). Etop() must not be negative. Etiny($self, /) -- Return a value equal to Emin - prec + 1, which is the minimum exponent value for subnormal results. When underflow occurs, the exponent is set to Etiny. fma($self, x, y, z, /) -- Return x multiplied by y, plus z. power($self, /, a, b, modulo=None) -- Compute a**b. If 'a' is negative, then 'b' must be integral. The result will be inexact unless 'a' is integral and the result is finite and can be expressed exactly in 'precision' digits. In the Python version the result is always correctly rounded, in the C version the result is almost always correctly rounded. If modulo is given, compute (a**b) % modulo. The following restrictions hold: * all three arguments must be integral * 'b' must be nonnegative * at least one of 'a' or 'b' must be nonzero * modulo must be nonzero and less than 10**prec in absolute value subtract($self, x, y, /) -- Return the difference between x and y. remainder_near($self, x, y, /) -- Return x - y * n, where n is the integer nearest the exact value of x / y (if the result is 0 then its sign will be the sign of x). remainder($self, x, y, /) -- Return the remainder from integer division. The sign of the result, if non-zero, is the same as that of the original dividend. quantize($self, x, y, /) -- Return a value equal to x (rounded), having the exponent of y. next_toward($self, x, y, /) -- Return the number closest to x, in the direction towards y. multiply($self, x, y, /) -- Return the product of x and y. min_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. min($self, x, y, /) -- Compare the values numerically and return the minimum. max_mag($self, x, y, /) -- Compare the values numerically with their sign ignored. max($self, x, y, /) -- Compare the values numerically and return the maximum. divmod($self, x, y, /) -- Return quotient and remainder of the division x / y. divide_int($self, x, y, /) -- Return x divided by y, truncated to an integer. divide($self, x, y, /) -- Return x divided by y. compare_signal($self, x, y, /) -- Compare x and y numerically. All NaNs signal. compare($self, x, y, /) -- Compare x and y numerically. add($self, x, y, /) -- Return the sum of x and y. sqrt($self, x, /) -- Square root of a non-negative number to context precision. to_integral_value($self, x, /) -- Round to an integer. to_integral_exact($self, x, /) -- Round to an integer. Signal if the result is rounded or inexact. to_integral($self, x, /) -- Identical to to_integral_value(x). plus($self, x, /) -- Plus corresponds to the unary prefix plus operator in Python, but applies the context to the result. normalize($self, x, /) -- Reduce x to its simplest form. Alias for reduce(x). next_plus($self, x, /) -- Return the smallest representable number larger than x. next_minus($self, x, /) -- Return the largest representable number smaller than x. minus($self, x, /) -- Minus corresponds to the unary prefix minus operator in Python, but applies the context to the result. log10($self, x, /) -- Return the base 10 logarithm of x. ln($self, x, /) -- Return the natural (base e) logarithm of x. exp($self, x, /) -- Return e ** x. abs($self, x, /) -- Return the absolute value of x. as_integer_ratio($self, /) -- Decimal.as_integer_ratio() -> (int, int) Return a pair of integers, whose ratio is exactly equal to the original Decimal and with a positive denominator. The ratio is in lowest terms. Raise OverflowError on infinities and a ValueError on NaNs. as_tuple($self, /) -- Return a tuple representation of the number. from_float($type, f, /) -- Class method that converts a float to a decimal number, exactly. Since 0.1 is not exactly representable in binary floating point, Decimal.from_float(0.1) is not the same as Decimal('0.1'). >>> Decimal.from_float(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625') >>> Decimal.from_float(float('nan')) Decimal('NaN') >>> Decimal.from_float(float('inf')) Decimal('Infinity') >>> Decimal.from_float(float('-inf')) Decimal('-Infinity') shift($self, /, other, context=None) -- Return the result of shifting the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to shift. If the second operand is positive, then the shift is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and exponent of the first operand are unchanged. scaleb($self, /, other, context=None) -- Return the first operand with the exponent adjusted the second. Equivalently, return the first operand multiplied by 10**other. The second operand must be an integer. rotate($self, /, other, context=None) -- Return the result of rotating the digits of the first operand by an amount specified by the second operand. The second operand must be an integer in the range -precision through precision. The absolute value of the second operand gives the number of places to rotate. If the second operand is positive then rotation is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged. logical_xor($self, /, other, context=None) -- Return the digit-wise 'exclusive or' of the two (logical) operands. logical_or($self, /, other, context=None) -- Return the digit-wise 'or' of the two (logical) operands. logical_and($self, /, other, context=None) -- Return the digit-wise 'and' of the two (logical) operands. same_quantum($self, /, other, context=None) -- Test whether self and other have the same exponent or whether both are NaN. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. copy_sign($self, /, other, context=None) -- Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example: >>> Decimal('2.3').copy_sign(Decimal('-1.5')) Decimal('-2.3') This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total_mag($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their value as in compare_total(), but ignoring the sign of each operand. x.compare_total_mag(y) is equivalent to x.copy_abs().compare_total(y.copy_abs()). This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. compare_total($self, /, other, context=None) -- Compare two operands using their abstract representation rather than their numerical value. Similar to the compare() method, but the result gives a total ordering on Decimal instances. Two Decimal instances with the same numeric value but different representations compare unequal in this ordering: >>> Decimal('12.0').compare_total(Decimal('12')) Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. The result of this function is Decimal('0') if both operands have the same representation, Decimal('-1') if the first operand is lower in the total order than the second, and Decimal('1') if the first operand is higher in the total order than the second operand. See the specification for details of the total order. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. As an exception, the C version may raise InvalidOperation if the second operand cannot be converted exactly. to_eng_string($self, /, context=None) -- Convert to an engineering-type string. Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, Decimal('123E+1') is converted to Decimal('1.23E+3'). The value of context.capitals determines whether the exponent sign is lower or upper case. Otherwise, the context does not affect the operation. number_class($self, /, context=None) -- Return a string describing the class of the operand. The returned value is one of the following ten strings: * '-Infinity', indicating that the operand is negative infinity. * '-Normal', indicating that the operand is a negative normal number. * '-Subnormal', indicating that the operand is negative and subnormal. * '-Zero', indicating that the operand is a negative zero. * '+Zero', indicating that the operand is a positive zero. * '+Subnormal', indicating that the operand is positive and subnormal. * '+Normal', indicating that the operand is a positive normal number. * '+Infinity', indicating that the operand is positive infinity. * 'NaN', indicating that the operand is a quiet NaN (Not a Number). * 'sNaN', indicating that the operand is a signaling NaN. logical_invert($self, /, context=None) -- Return the digit-wise inversion of the (logical) operand. logb($self, /, context=None) -- For a non-zero number, return the adjusted exponent of the operand as a Decimal instance. If the operand is a zero, then Decimal('-Infinity') is returned and the DivisionByZero condition is raised. If the operand is an infinity then Decimal('Infinity') is returned. copy_negate($self, /) -- Return the negation of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. copy_abs($self, /) -- Return the absolute value of the argument. This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed. radix($self, /) -- Return Decimal(10), the radix (base) in which the Decimal class does all its arithmetic. Included for compatibility with the specification. conjugate($self, /) -- Return self. canonical($self, /) -- Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is always canonical, so this operation returns its argument unchanged. adjusted($self, /) -- Return the adjusted exponent of the number. Defined as exp + digits - 1. is_subnormal($self, /, context=None) -- Return True if the argument is subnormal, and False otherwise. A number is subnormal if it is non-zero, finite, and has an adjusted exponent less than Emin. is_normal($self, /, context=None) -- Return True if the argument is a normal finite non-zero number with an adjusted exponent greater than or equal to Emin. Return False if the argument is zero, subnormal, infinite or a NaN. is_zero($self, /) -- Return True if the argument is a (positive or negative) zero and False otherwise. is_signed($self, /) -- Return True if the argument has a negative sign and False otherwise. Note that both zeros and NaNs can carry signs. is_snan($self, /) -- Return True if the argument is a signaling NaN and False otherwise. is_qnan($self, /) -- Return True if the argument is a quiet NaN, and False otherwise. is_nan($self, /) -- Return True if the argument is a (quiet or signaling) NaN and False otherwise. is_infinite($self, /) -- Return True if the argument is either positive or negative infinity and False otherwise. is_finite($self, /) -- Return True if the argument is a finite number, and False if the argument is infinite or a NaN. is_canonical($self, /) -- Return True if the argument is canonical and False otherwise. Currently, a Decimal instance is always canonical, so this operation always returns True. fma($self, /, other, third, context=None) -- Fused multiply-add. Return self*other+third with no rounding of the intermediate product self*other. >>> Decimal(2).fma(3, 5) Decimal('11') remainder_near($self, /, other, context=None) -- Return the remainder from dividing self by other. This differs from self % other in that the sign of the remainder is chosen so as to minimize its absolute value. More precisely, the return value is self - n * other where n is the integer nearest to the exact value of self / other, and if two integers are equally near then the even one is chosen. If the result is zero then its sign will be the sign of self. quantize($self, /, exp, rounding=None, context=None) -- Return a value equal to the first operand after rounding and having the exponent of the second operand. >>> Decimal('1.41421356').quantize(Decimal('1.000')) Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an InvalidOperation is signaled. This guarantees that, unless there is an error condition, the quantized exponent is always equal to that of the right-hand operand. Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact. If the exponent of the second operand is larger than that of the first, then rounding may be necessary. In this case, the rounding mode is determined by the rounding argument if given, else by the given context argument; if neither argument is given, the rounding mode of the current thread's context is used. next_toward($self, /, other, context=None) -- If the two operands are unequal, return the number closest to the first operand in the direction of the second operand. If both operands are numerically equal, return a copy of the first operand with the sign set to be the same as the sign of the second operand. min_mag($self, /, other, context=None) -- Similar to the min() method, but the comparison is done using the absolute values of the operands. min($self, /, other, context=None) -- Minimum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. max_mag($self, /, other, context=None) -- Similar to the max() method, but the comparison is done using the absolute values of the operands. max($self, /, other, context=None) -- Maximum of self and other. If one operand is a quiet NaN and the other is numeric, the numeric operand is returned. compare_signal($self, /, other, context=None) -- Identical to compare, except that all NaNs signal. compare($self, /, other, context=None) -- Compare self to other. Return a decimal value: a or b is a NaN ==> Decimal('NaN') a < b ==> Decimal('-1') a == b ==> Decimal('0') a > b ==> Decimal('1') sqrt($self, /, context=None) -- Return the square root of the argument to full precision. The result is correctly rounded using the ROUND_HALF_EVEN rounding mode. to_integral_value($self, /, rounding=None, context=None) -- Round to the nearest integer without signaling Inexact or Rounded. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral_exact($self, /, rounding=None, context=None) -- Round to the nearest integer, signaling Inexact or Rounded as appropriate if rounding occurs. The rounding mode is determined by the rounding parameter if given, else by the given context. If neither parameter is given, then the rounding mode of the current default context is used. to_integral($self, /, rounding=None, context=None) -- Identical to the to_integral_value() method. The to_integral() name has been kept for compatibility with older versions. normalize($self, /, context=None) -- Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Decimal('0') to Decimal('0e0'). Used for producing canonical values for members of an equivalence class. For example, Decimal('32.100') and Decimal('0.321000e+2') both normalize to the equivalent value Decimal('32.1'). next_plus($self, /, context=None) -- Return the smallest number representable in the given context (or in the current default context if no context is given) that is larger than the given operand. next_minus($self, /, context=None) -- Return the largest number representable in the given context (or in the current default context if no context is given) that is smaller than the given operand. log10($self, /, context=None) -- Return the base ten logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. ln($self, /, context=None) -- Return the natural (base e) logarithm of the operand. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. exp($self, /, context=None) -- Return the value of the (natural) exponential function e**x at the given number. The function always uses the ROUND_HALF_EVEN mode and the result is correctly rounded. C decimal arithmetic moduleContext(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None) -- The context affects almost all operations and controls rounding, Over/Underflow, raising of exceptions and much more. A new context can be constructed as follows: >>> c = Context(prec=28, Emin=-425000000, Emax=425000000, ... rounding=ROUND_HALF_EVEN, capitals=1, clamp=1, ... traps=[InvalidOperation, DivisionByZero, Overflow], ... flags=[]) >>> Decimal(value="0", context=None) -- Construct a new Decimal object. 'value' can be an integer, string, tuple, or another Decimal object. If no value is given, return Decimal('0'). The context does not affect the conversion and is only passed to determine if the InvalidOperation trap is active. J*m< d'@Bʚ; TvHrN @zZƤ~o#]xEcd #NJ?B  ?Bc c ?@KK9$|k??C_"@C 0. ȱ̱8˵1])r! A97QDzIPs; @ @ @ @ @ @ @ @O|OODecimal('%s')F(i)%s:%d: error: otherinternal error in dec_mpd_qquantizeCannot hash a signaling NaN valuedec_hash: internal error: please report../Modules/_decimal/libmpdec/typearith.hsub_size_t(): overflow: check the contextd d Kvl?x?OO|OsNaN+Infinity+Zero+Normal+Subnormal-Infinity-Zero-Normal-Subnormalargument must be a Decimalthirdinternal error in PyDec_ToIntegralValueinternal error in PyDec_ToIntegralExact$`%~5 w.YK=Se@aB(e f5D~/B.B0gh,=g8E% k:Z>q(ZTn!sӠx&RwZsj_2 ph`:~APl oVyK+[ hiGwp m^C,?̇v0,^y(Ft=JL8G[P)*CEh:!yk0ׄv\B6` '2%k€"aD2^.-.x r16H6a6lRi83-f:\ oG(?r/ف-AB%f¿z=#z?Z=;976420/-+)(&$"!   }|zywvtsrpomljihfecb`_^\[YXVUTRQPNMKJHGFDCB@?><;98754210.-,*)(&%$"!     ~|{zyxwvtsrqponmljihgfedcba_^]\[ZYXWVTSRQPONMLKJIHFEDCBA@?>=<;:986543210/.-,+*)('&%$#"! (OO)Infexponent must be an integer%s%lisignal keys cannot be deletedO(O)O(nsnniiOO)%s, moduloargument must be a sequence of length 3sign must be an integer with the value 0 or 1string argument in the third position must be 'F', 'n' or 'N'coefficient must be a tuple of digitsinternal error in dec_sequence_as_strvalid values for signals are: [InvalidOperation, FloatOperation, DivisionByZero, Overflow, Underflow, Subnormal, Inexact, Rounded, Clamped]invalid decimal point or unsupported combination of LC_CTYPE and LC_NUMERICinternal error in context_setstatus_dictinternal error in context_reprContext(prec=%zd, rounding=%s, Emin=%zd, Emax=%zd, capitals=%d, clamp=%d, flags=%s, traps=%s)mul_size_t(): overflow: check the contextadd_size_t(): overflow: check the context []TrueFalse{:%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s, :%s}../Modules/_decimal/libmpdec/mpdecimal.clibmpdec: internal error in _mpd_base_ndivmod: please report]xEccd XLIcd cd ;vRXXdW\y\\X\\@p^|w^^ ^dH_[_DnauaaHabTc=cc<d|Fd dveehf ggqii j| l,!p!Mp!p"p"p"pH#q#!q$Tq$pq%Sr\&sr&r '#sl'hs'ksL({s(sX)Nu *u*v +v@+v+ w+3wL,x,Py,y@-y-yD..z.z,/zh/z/z0e{0{{<1{1,|`23|2|2|<3 }3v}L4}4}4}5}H5~586+6O6X7X88u499!9܇P::;`;L;<<h<p =`=+=a,>> >3?t?(?F|@$AcAAA[4BgBCD@dDDD֚HE?E]FhFѝF GPGHtHHK\IIHJ'Jʢ4K_KtLMMf4NNPLOO P8PPQ\Q*Q(RɩhRoR\SSޫ4TTLTPUˬUV?\VVŭVLW(W/WX(XX$Y)xYmY4ZgZP[6[[߲ \P\\0\N\i$]T]]]س ^ X^B^w^ôH__D_P`ܵ`(atXaa b?\btbcLc*c1cf4ddJdPee.eEDffݺf@g]ggh\h hټ8iiDjڽjTjξ4k־xkk`l$l;mX|mkmnnulnԿnn o%Tocoo$ppq >P>$8?&?`& @&C9xQ9U:U0:U0;HX>\>\>]P?8]?h] @]@] A(^At^@B^@C_Cd_D_E`Fl`G`HaIta`J,bJxbKbLcMhcMcNPdOd Od Pe Qle ReSfT`fU\gUg0VgVthWhPZhZi[jP\dj0]j^k`^Lk^k@alalblblbmcm cm`c0ndnPdod@odpodo0eoeTqfqPfqf,rgrhr hs`hHsPjsPl,tnTtt$vPtLvtvu,w0wwwwpzyz@z{z0{|||zRx $?FJ w?;*3$"DDH\BBB B(A0A8B@ 8D0A(B BBBA dD@(CADA u AAA G"  H A ,G+D @XA[PrXF`FhFpFxFUPLXG`DhDpbPDADGPH(BEE B(D0A8GP  8A0A(B BBBD F6P  L4h} BKB B(J0H8D 8D0A(B BBBD Fx5D i A G hKAIG3Aq<$8qADG  AAC L AAB DGAddG,xdBBB A(A0Dp0&GpG 0D(A BBBA ALAo A Z$`GH<zBIE B(A0A8G 8D0A(B BBBA G^K{ A HD%AcH, @BAA  ABA <z8P\\BA A(J0 (F ABBA CHJ0dH BEB B(A0D8Dpe 8A0A(B BBBE  8I0A(B BBBE  Hpd0BBE B(A0D8G`- 8A0A(B BBBA ~ 8A0A(B BBBE rHF`:Ax|H)@fBBB E(A0G@o 0A(B BBBA 0IH@,PBAA B ABA H    AG r AA HA t}BED A(DPZFFFFFF[YDDDbH (D ABBA P2HRlLAW P @zBBB A(A0DP\ 0D(A BBBA HP8BDD D(DP (D ABBA ( HBPdD sBBB E(D0A8I 8A0A(B BBBJ  8A0A(B BBBA  HH3 MAC ?IU (Af )I @4 xBBE D(H0G@a 0D(A BBBA Lx  BBB B(D0D8G* 8D0A(B BBBA  H[4 JDG a AAA pF L BDD G0_  JABE h  AABA J GAELp \BAA K ABE W DBA A GBE AGB$ rAFD aDA I L  BFE E(D0D8G 8A0A(B BBBG P sI"Lp lx BFB B(A0A8G 8D0A(B BBBA  %JM |!AU J l #BHB B(E0D8G  8A0A(B BBBA  A s B _ D O A p K( 8 tBFD D(Dc (D ABBA  N/8 #BED D(G@f (A ABBF $eN6@0@$BDD F0d  AABA (tX|AAA r AAA ,{BFA D0f DABM#0"MVAD GE4M" ^C8P,$BED D(G@P (G ABBE MH@`$M @BDD G0d  JABE s  AABA p(%wBEB D(D0z (A BBBE Q (A BBBA y (F EDBE _ (A BBBE 0&BCA G0  DABA L30`'&|'|L<(4(N I S D DHDCIDDh)JBEE B(A0D8G\ 8A0A(B BBBA z 8M0A(B BBBE  8G0A(B BBBE Y 8A0A(B BBBE Y 8I0A(B BBBE v 8F0A(B BBBE 4xKHT1 BBE B(A0D8G`% 8A0A(B BBBJ K `,L{BFA D0f DABK#0@ 0<BBB D(F0D@ 0D(A BBBA PK@<pbBEB D(A0G (A BBBA LKE0A (D GBBE A (D EBBE H(D HBB<>Kd(4> BEB E(D0A8DP  8A0A(B BBBC S 8J0A(B BBBE KPHG`BBE E(A0A8G@ 8D0A(B BBBA Jl@|H) BBB B(D0D8J@ 8A0A(B BBBD  8K0D(B BBBE M 8I0A(B BBBE Jg@@BDD G0k  JABE s  AABA LBBB D(A0 (A BBBA C (F EBBE @P:K20A (D GBBE A (D BBBE HhRBBB B(D0F8D` 8D0A(B BBBA J`HU[BFE E(A0D8J  8A0A(B BBBA PK p+K \U! LEB B(D0D8  0D(B BBBD  0A(F BEBK @K8b,K&L@NL(V#BFB B(A0A8G 8A0A(B BBBD (N)L($)XAMQ0 DAA P)\S508h)BIF D(Gp (A ABBA )=SL)\pBFE B(A0D8J  8A0A(B BBBA *WS6<0*\hBDB D(D0GPH0A(A BBBp*-TP4*lSBBD D(G@y(A ABB*jT@*x-*OT(L +TBBB B(A0A8G  8C0A(B BBBA \+T 8|+p\BFE E(J (B BBBA +T)(+xBAFG0_ AAA 0,<}BAD G0y  DABA 4,0T0(P,L}ADG X CAA |,@8,,l?BDD G0i AAB,SO0,,`VVAD0P AAA g -=D -BKA A(TxVRxAp# (D ABBA h-iSp- 0-HGG0JAAAA0-S0-x->T ( .pAJT0` AAA 8. TU0P.ܣ/d.x.T .H.BIB K(A0D8J8A0A(B BBB.S3 / /BEB B(D0D8J 8A0A(B BBBA G 8H0C(B BBBE G 8K0A(B BBBE V 8K0A(B BBBE R 8L0A(B BBBE 8/Sk 8A0D(G BBBE L 0BIB B(G0D8JG 8A0A(B BBBA \0S(|0AJT0` AAA 0UU00l/0*0U (0AMQ0 DAA (1U50H@1,BIB B(A0D8R 8A0A(B BBB1Ui H1ШBFE E(D0D8J8A0A(B BBB1V(2$AMQ0 DAA D2UVG0L\2BEE H(A0A8O 8A0A(B BBBA 24V-H2pBIE B(D0D8J8A0A(B BBB3V8(83ԮAMQ0 DAA d3VG0 |3prD a I ` A ^03̯WBJA TP   DABA 3VP`3ܰBBB B(A0D8D` 8D0A(B BBBE H 8I0A(B BBBE 4T4V`8A0A(B BBB(4PAJT0 DAA 4WH0`4eBEB B(A0D8B@ 8D0I(B BBBE S 8D0D(B BBBE 445Vk@P 8A0A(B BBBA 0l5WBJA TP   DABA 5VP`5ж&BBB B(D0A8Dp 8D0A(B BBBE I 8I0A(B BBBE 4 6VpZ 8A0A(B BBBA 0X6dUBJA TP  DABA 6BWP`6tKBBE B(A0A8Gp  8D0A(B BBBE I 8L0A(B BBBE 4 7WWp 8A0A(B BBBA 0D7(WBJA TP   DABA x7WPL78BEE D(D0P (D HBBE G (A BBBA 07UBJA TP  DABA 8WPL48BEE D(D0P (D HBBE G (A BBBA 08hUBJA TP  DABA 8xWPL8xBEE D(D0P (D HBBE F (A BBBA 0$9UBJA TP  DABA X9mWPLt9BEE D(D0P (D HBBE F (A BBBA (9AJT0 DAA 9jWH0@:DMBBE D(D0G 0A(A BBBA (L:PAJT0 DAA x:*WH0@:XBBE D(D0G 0A(A BBBA 0:QBJA TP  DABA ;VP<$;BEE D(D0J (A BBBA (d;AJT0 DAA ;VH0\;D BBD D(G@ (A ABBA D (I DBBE W (G ABBE <V@($<AJT0U AAA P<VE0h<D|<V<@A~0<WBJA TP   DABA <PVPL< BIE B(D0D8J  8A0A(B BBBA L={V  0l=UBJA TP  DABA =1WP= L=[BHE E(D0D8J  8A0A(B BBBA  >FW{ (@>|AAG0q AAA l>uW$0$>AJTPAA>YWP>=0>cBJA TP  DABA  ?WP@(?$$BHE D(D0G@ 0A(A BBBA 0l?UBJA TP  DABA ?WP@? !BHE D(D0G@ 0A(A BBBA (@ AJT0 DAA ,@WI00D@\BJA Tp  DABA x@W7p0@YBJA Tp  DABA @W7p@@, ABJA L0n DABTL`8QBDA A(Q` (D ABBA Q2TL`(RTACQP AAA 4R6TP8LRBDA A(Q` (D ABBA RSL`8RBDA A(Q` (D ABBA RSL`,RBJI D0n DAB,SS408HS$BDA A(Q` (D ABBA SSL`$SAGL@iDASS#@,SBJA L0s DABTS50,,T@BJA L0p DAB\TS50$xTAGL@iDATS#@TT8iNHT|>BBB B(A0A8G` 8D0A(B BBBA U-S`<Aa A ZZ$Q[H5AG _I$[P D CA D[H5AG _Id[P D CA [H[P>A|[(AADD0 [P!0D DAA [45AG _I\P D CA ,8\4IDC v AAA uh\wP \,\8 \4 <\0BAA G0S8A@AHDPO0` AAB\OD0(]tgBAE [ABD]O `]OAr A Z]O]d:Ax]O)$]pHAGL@qAA]O@D ^BAA JRIAAOG AABT^SODp^BEB E(H0F8FP8A0A(B BBB^ OP^$9Ap^N _0DM(_NR@_NSA0X_<JAD bAAAC `_BBE E(D0A8JO 8D0A(B BBBE 8A0A(B BBB8_N 8H0A(B BBBE (,``MP AA AX`O$p`ADZ AA L`BBE B(A0A8G 8A0A(B BBBA `NHaD7 BLE E(D0D8DP 8A0A(B BBBA TaQ,P<taUTD  DBA KF aR\ alZaRLaBGG E(A0D8D 8A0A(B BBBA HbR]$hbAADI pAAbJLbV BHB B(A0D8D 8A0A(B BBBA bMS8cBBB D(D0d (A BBBA PcqS0LpcLBHB B(A0A8G 8A0A(B BBBA cS0ckBMK H(C ABBHdBGF B(A0A8J8A0A(B BBB ddS$HddEBEG E(D0I8KP 8D0A(B BBBA d5S#PDdH BOE E(D0A8 0A(B BBBA @ IM`N`WW$0X .Y)Z@8bDpc`Vb hPmPFqpG@y?KE@FST UV`PN XƘP[`Ϙ`\٘`]pQpO L> >`P\   J@J`#J/K6`K@@KH0LRL ZLg`M`o@sp? vpBC@C NPPZ pRǙ@b`ՙ@AC@O QR"`^ )`_6@``=@aCPGO?[dW͗ opH`~`Eqe @@p $".'8;D@=`V; h`q`yp@0`$ Ƙ`٘* ``#`/``@`RHg`6Z p` *`v  )Ǚ; ՙ `  @)4p` 0 `"0 65@=8 @`#[0p0p˚ dq֚PqPq0r PiPhpPpj@pIUbȖIUc c XLI8>ћɛ6.MEd\um@ @vprٜ ``.s`:@`@h#@@`X`&`ȖȖHȖHȖHȖHȖHȖ ȖȖȖȖHȖHȖHȖHȖHȖȖȖHȖȖȖHȖHȖHȖHȖHȖHȖȖHȖȖȖȖȖȖHȖM6du;84a9acedd13235dc79283fa8abc2e1526bd946.debug뷯.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.data.rel.ro.dynamic.got.plt.data.bss.gnu_debuglink 88$o``$(  0ppU8oEopT88=^BVVh``c ` `neewff$}ЊЊ @} @ @ !!iЛЋ؛؋P 00r#  4Զ